The intrinsic viscosity, [eta], of certain polymer-solvent systems, such as alkanes in benzene, are "anomalous" in the sense that [eta] for low molecular weight fractions are low and in certain cases negative (Dewan, K. K.; Bloomfield, V. A.; Berget, P. G.; J. Phys. Chem. 1974, 75, 3120). In this work, the theory of the viscosity of a dilute suspension of macromolecules at low shear is formulated that accounts for possible solute-solvent interactions. In doing so, we show that negative intrinsic viscosities are possible and are able to reproduce quite well the known length dependence of [eta] for alkanes in benzene. The coarse grained, solvent continuum, bead model developed here is an extension of previous work (Allison, S. A.; Pei, H. J. Phys. Chem. B 2009, 113, 8056). Following Fixman (Fixman, M. J. Chem. Phys. 1990, 92, 6858), we assume that solute-solvent interactions are short-range in character and can be separated from long-range hydrodynamic interactions between different beads. These interactions are accounted for by introducing three adjustable parameters specific to the transport of small "monomeric" solutes in the solvent of interest. Long range hydrodynamic interactions are accounted for to order a(J)(2)/r(IJ)(3) (a(J) is a bead radius and r(IJ) is an interbead distance). In modeling a macromolecule as an arbitrary array of N beads, the transport of the array is examined numerically in 5 different elementary shear fields. The most computationally demanding component of the procedure involves the inversion of a 12N by 12N matrix. In the present work, we restrict ourselves to systems with a maximum N of about 100. Our procedure is first applied to short rods and rings of from 2 to 10 beads which can be compared with independent results from the literature. Agreement is found to be better than 5%. Modeling macromolecules as wormlike chains, the procedure is then applied first to duplex DNA and then to alkanes in benzene. In both cases, it is possible to obtain excellent agreement between modeling and experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp907020jDOI Listing

Publication Analysis

Top Keywords

solute-solvent interactions
12
alkanes benzene
12
viscosity dilute
8
low shear
8
phys chem
8
hydrodynamic interactions
8
interactions accounted
8
procedure applied
8
interactions
6
dilute model
4

Similar Publications

Pyrazole derivatives are aromatic heterocyclic compounds endowed with multifaceted applications. In the present study 1,3,4-trisubstituted pyrazoles derivatives have been synthesized for the purpose of studying their physical properties and their characterization was done by FTIR, H NMR and C NMR spectroscopic technique. The measurement of densities (ρ) and viscosities (η) of solutions of substituted pyrazole derivative in polar aprotic solvent i.

View Article and Find Full Text PDF

The majority of enantioselective organocatalytic reactions occur in apolar or weakly polar organic solvents. Nevertheless, the influence of solute-solvent van der Waals forces on the relative kinetics of competitive pathways remains poorly understood. In this study, we provide a first insight into the nature and strength of these interactions at the transition state level using advanced computational tools, shedding light into their influence on the selectivity.

View Article and Find Full Text PDF

Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:

Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.

View Article and Find Full Text PDF

Study on the formation mechanism and effective manipulation of polymorphs and solvates in Osimertinib-Caffeic acid multi-component crystal with distinct properties.

Int J Pharm

December 2024

Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.

View Article and Find Full Text PDF

This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!