AI Article Synopsis

  • The tumor suppressor gene p53 plays a crucial role in inhibiting tumor growth, and this study focused on the effects of adenoviral p53 (Adp53) on human ovarian cancer cells to understand its mechanisms for inducing cell death and stopping the cell cycle.
  • Through various experimental methods, including cell count assays and Western blot analysis, the researchers found that Adp53 significantly reduced the growth of cervical cancer cells, induced apoptosis, and caused cell cycle arrest, specifically in certain cell lines.
  • The study concludes that Adp53 not only leads to increased expression of cell cycle regulatory proteins but also provides a promising approach for targeting cancer cells in future therapies.

Article Abstract

Purpose: The tumor suppressor gene, p53, has been established as an essential component for the suppression of tumor cell growth. In this study, we investigated the time-course anticancer effects of adenoviral p53 (Adp53) infection on human ovarian cancer cells to provide insight into the molecular-level understanding of the growth suppression mechanisms involved in Adp53-mediated apoptosis and cell cycle arrest.

Materials And Methods: Three human cervical cancer cell lines (SiHa, CaSki, HeLa and HT3) were used. The effect of Adp53 infection was studied via cell count assay, cell cycle analysis, FACS, Western blot and macroarray assay.

Results: Adp53 exerts a significant role in suppressing cervical cancer cell growth. Adp53 also showed growth inhibitory effects in each cell line, and it induced apoptosis and cell cycle arrest. Adp53 differentially regulated the expression of genes and proteins, and the gene expression profiles in the SiHa cells revealed that the p21, p53 and mdm2 expressions were significantly up-regulated at 24 and 48 hr. Western blot shows that the p21 and p53 expression-levels were significantly increased after Adp53 infection. In addition, in all cell lines, both the CDK4 and PCNA protein expression levels were decreased 48 h after Adp53 infection. Cell cycle arrest at the G1 phase was induced only in the SiHa and HeLa cells, suggesting that exogenous infection of Adp53 in cancer cells was significantly different from the other HPV-associated cervical cancer cells.

Conclusion: Adp53 can inhibit cervical cancer cell growth through induction of apoptosis and cell cycle arrest, as well as through the regulation of the cell cycle-related proteins. The Adp53-mediated apoptosis can be employed as an advanced strategy for developing preferential tumor cell-specific delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741675PMC
http://dx.doi.org/10.4143/crt.2006.38.3.168DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
cervical cancer
20
adp53 infection
16
cell
14
cancer cells
12
cell growth
12
apoptosis cell
12
cancer cell
12
cycle arrest
12
adp53
9

Similar Publications

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.

View Article and Find Full Text PDF

Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.

View Article and Find Full Text PDF

Cell integrity limits ploidy in budding yeast.

G3 (Bethesda)

January 2025

Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Emerging Trends in Neuroblastoma Diagnosis, Therapeutics, and Research.

Mol Neurobiol

January 2025

Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.

This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!