Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738636 | PMC |
http://dx.doi.org/10.1371/journal.pbio.1000201 | DOI Listing |
Nanoscale
January 2025
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
Superlattices are significant means to reduce the lattice thermal conductivity of thermoelectric materials and optimize their performance. In this work, using high-precision first-principles based neural network potentials combined with non-equilibrium molecular dynamics simulations and the phonon Boltzmann transport equation, the lattice thermal conductivities of BiTe monolayer and lateral BiTe/SbTe monolayer superlattices are thoroughly investigated. As the period length increases, the thermal conductivity shows a trend of an initial decrease followed by an increase, which aligns with conventional observations.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electrical Engineering, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of V 3d orbitals.
View Article and Find Full Text PDFNat Commun
January 2025
School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
Two-dimensional (2D) van der Waals heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo "spontaneous curvature", which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!