We explore a simple, inexpensive approach to large particle manipulation using diode laser bar optical trapping. This method overcomes limitations that prevent conventional point laser traps from effectively directing large particles. Expanding a previously developed line optical trap model into larger particle regimes, we verify and examine the advantages and limitations of diode laser bar trapping for manipulating particles greater than 100 microm in diameter within fluidic environments for biochemical, biological, and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.016731DOI Listing

Publication Analysis

Top Keywords

diode laser
12
optical trapping
8
laser bar
8
particle size
4
size limits
4
limits optical
4
trapping deflection
4
deflection particles
4
particles sorting
4
sorting diode
4

Similar Publications

Theory for Dissipative Time Crystals in Coupled Parametric Oscillators.

Phys Rev Lett

December 2024

University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.

Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.

View Article and Find Full Text PDF

The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.

View Article and Find Full Text PDF

The controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.

View Article and Find Full Text PDF

This work investigates how misalignments of collimation lenses affect two performance criteria: minimum throughput within an angular window and maximum beam height. Based on these criteria, we establish an alignment concept for the first section of a LiDAR emitter. The performance criteria are derived from the overall LiDAR system requirements and applied to an optical system consisting of a laser diode array source, a microlens array for slow-axis collimation, and an acylinder for fast-axis collimation.

View Article and Find Full Text PDF

Tapered diode lasers, composed of an index-guided ridge waveguide and a gain-guided tapered amplifier, are affected by polarization mismatch between the ridge and tapered sections. Beam quality deterioration is caused by TM high-order modes generated in the ridge section. Under high current injection, these TM modes are further amplified in the tapered section due to polarization mismatch, leading to a decrease in the laser output brightness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!