The on-off switch in regulated myosins: different triggers but related mechanisms.

J Mol Biol

Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, MA 02453-2728, USA.

Published: December 2009

AI Article Synopsis

  • Myosin's motor and enzymatic activities are controlled by a regulatory domain (RD) on its lever arm, toggling between on and off states.
  • The on-state is activated through phosphorylation of the regulatory light chain (RLC) or by calcium binding to the essential light chain (ELC), while crystal structures have only been characterized for the molluscan RD.
  • The recent study revealed that the absence of calcium disrupts interactions between the light chains, increasing the RD's flexibility and suggesting that the loss of key links with the RLC initiates the off-state in smooth muscle and molluscan myosins.

Article Abstract

In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long alpha-helical "heavy chain" stabilized by a "regulatory" light chain (RLC) and an "essential" light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca(2+) to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca(2+). Our results indicate that loss of Ca(2+) abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997636PMC
http://dx.doi.org/10.1016/j.jmb.2009.09.035DOI Listing

Publication Analysis

Top Keywords

on-state off-state
8
light chain
8
smooth muscle
8
on-off switch
4
switch regulated
4
regulated myosins
4
myosins triggers
4
triggers mechanisms
4
mechanisms regulated
4
regulated myosin
4

Similar Publications

Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics.

Nano Lett

January 2025

Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.

Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.

View Article and Find Full Text PDF

Thermal switches, which electrically turn heat flow on and off, have attracted attention as thermal management devices. Electrochemical reduction/oxidation switches the thermal conductivity (κ) of active metal oxide films. The performance of the previously proposed electrochemical thermal switches is low; the on/off κ-ratio is mostly less than 5, and the κ-switching width is less than 5 watts per meter kelvin.

View Article and Find Full Text PDF

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF

Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher.

Anal Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!