We have developed a new transcutaneous energy transmission (TET) system for a totally implantable biventricular assist device (BVAD) system in the New Energy and Industrial Development Organization (NEDO) artificial heart project. The TET system mainly consists of an energy transmitter, a hybrid energy coil unit, an energy receiver, an internal battery system, and an optical telemetry system. The hybrid energy coil unit consists of an air-core energy transmission coil and an energy-receiving coil having a ferrite core. Internal units of the TET system are encapsulated in a titanium alloy casing, which has a size of 111 mm in width, 73 mm in length, and 25 mm in height. In in vitro experiments, the TET system can transmit a maximum electric energy of 60 Watts, and it has a maximum transmission efficiency of 87.3%. A maximum surface temperature of 46.1 degrees C was measured at the ferrite core of the energy-receiving coil during an energy transmission of 20 Watts in air. The long-term performance test shows that the TET system has been able to operate stably for over 4 years with a decrease of energy-transmission efficiency from 85% to 80%. In conclusion, the TET system with the hybrid energy coil can overcome the drawback of previously reported TET systems, and it promises to be the highest performance TET system in the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1594.2009.00785.x | DOI Listing |
Vet Microbiol
January 2025
Department of Animal Science, ETSEA, Universitat de Lleida, Lleida 25198, Spain. Electronic address:
Streptococcus suis (S. suis) is a major pathogen for pigs, causing large economic losses to the swine industry. Moreover, this bacterium has a zoonotic potential, being capable of infecting humans in close contact with pigs or, less frequently, through contact with pork products.
View Article and Find Full Text PDFMediastinum
October 2024
Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
Background And Objective: Thymic epithelial tumors (TETs) are the most common neoplasm of the prevascular mediastinal compartment and are characterized by their rarity and variable clinical presentation. The present study aimed to explore the current management of patients with TET with a special focus on immunotherapy for advanced disease.
Methods: Relevant studies published between 1981 and 2024 were searched in PubMed using search terms "Thymoma", "Thymic cancer", "Myasthenia gravis", "Radiation therapy", "Surgery", and "Immunotherapy".
Cell Res
January 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Turk J Med Sci
December 2024
Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.
Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Division of Hematology Oncology, Penn State College of Medicine, Hershey, PA, USA.
Background: Thymic epithelial tumor (TET) staging has been based on Masaoka-Koga systems or the 8th edition of the TNM classification, which do not use tumor size as a T descriptor. The 9th edition of the TNM classification incorporates tumor size; however, the study on which this classification is based included only 4.4% of patients from North America.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!