The well-established atomic force microscopy (AFM)-based colloidal probe technique (CPT) and optical tweezers (OT) are combined to measure the interaction forces between blank SiO(2) surfaces in aqueous ionic solutions (CaCl(2)) of varying concentration at pH 7. Spherical colloids (SiO(2), diameter approximately 4.63 +/- 0.05 microm) taken out of the same batch are used by both methods. In the case of CPT, a single colloid is glued to a cantilever, and the interaction forces with a plain SiO(2) surface are determined in dependence on the concentration of the surrounding medium. For the OT studies, two colloids (one fixed to a micropipet by capillary action, the other held with the optical trap) are approached to each other in nanometer steps, and the resulting forces are measured for the same media as in the CPT experiment. Both techniques fit well to each other and enable one to cover interaction energies ranging from 10(-5) to 1 mN/m. The experimental data are well described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory revealing that the effective surface charge density changes slightly with concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la901804aDOI Listing

Publication Analysis

Top Keywords

forces blank
8
colloidal probe
8
probe technique
8
interaction forces
8
forces
4
blank surfaces
4
surfaces measured
4
measured colloidal
4
technique optical
4
optical tweezers--a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!