From 1938 to 1972, the range of California sea otters (Enhydra lutris nereis) expanded with the northern and southern fronts spreading at rates of approximately 1.4 km/yr and 3.1 km/yr, respectively. J. A. Lubina and S. A. Levin proposed the following three factors to explain the large disparity in spread rates: (1) regional differences in dispersal; (2) regional differences in population growth; and (3) advection due to the known presence of a southerly flowing offshore current. While Lubina and Levin used a reaction-diffusion framework to argue for large differences in dispersal, our approach uses a stage-structured integrodifference matrix model to show that relatively minor differences in survival provide a more parsimonious explanation for the disparity in spread rates; especially if the survival rates between the northern and southern groups differ in more than one life stage. The argument is made that many of the present estimates for otter survival rates span intervals wide enough to explain the different spread rates--even more so in the likely case that advection plays at least a minor role in otter movement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/07-0794.1 | DOI Listing |
Dev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA.
Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA.
Tropical marine low cloud feedback is key to the uncertainty in climate sensitivity, and it depends on the warming pattern of sea surface temperatures (SSTs). Here, we empirically constrain this feedback in two major low cloud regions, the tropical Pacific and Atlantic, using interannual variability. Low cloud sensitivities to local SST and to remote SST, represented by lower-troposphere temperature, are poorly captured in many models of the latest global climate model ensemble, especially in the less-studied tropical Atlantic.
View Article and Find Full Text PDFEcol Lett
December 2024
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly.
View Article and Find Full Text PDFPeerJ
December 2024
Departamento de Biologia & Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal.
The Mediterranean Sea is recognized as one of the most threatened marine environments due to pollution, the unintentional spread of invasive species, and habitat destruction. Understanding the biodiversity patterns within this sea is crucial for effective resource management and conservation planning. During a research cruise aimed at assessing biodiversity near desalination plants in the vicinity of Larnaca, Cyprus, conducted as part of the WATER-MINING project (Horizon 2020), specimens of the tanaidacean genus were collected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!