Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus caffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025599 | PMC |
http://dx.doi.org/10.1890/08-1532.1 | DOI Listing |
Nutrients
December 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
: The water footprint (WF) provides information on the impact of individual foods on water consumption, but to better direct food production toward water saving, we need to understand how to reduce the WF of our diets while keeping it healthy. In this study, we compared the WF of healthy diets based on national food-based dietary guidelines with the aim of highlighting changes in dietary patterns that could reduce water requirements without compromising nutritional adequacy. : Three 2000 kcal/day dietary patterns were elaborated following the Italian, Spanish, and American dietary guidelines, and their total, green, blue, and grey WFs were calculated.
View Article and Find Full Text PDFFoods
December 2024
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
In an era of escalating environmental challenges, converting organic residues into high-value bioactive compounds provides a sustainable way to reduce waste and enhance resource efficiency. This study explores the potential of the circular bioeconomy through the valorization of agricultural byproducts, with a focus on the antioxidant properties of specific chestnut burr cultivars. Currently, over one-third of food production is wasted, contributing to both humanitarian and environmental crises.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Organic Chemistry LR17ES08, Faculty of Sciences of Sfax, University of Sfax, B.P 1171, Sfax 3038, Tunisia.
Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Physical Aspects of Ecoenergy, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14 Street, 80-231 Gdańsk, Poland.
The leather industry generates significant amounts of waste, including chromium-tanned leather waste (CTLW), which poses environmental and health hazards due to chromium's potential toxicity. Efficient management of CTLW is crucial for environmental sustainability and resource recovery. Various methods exist for chromium recovery, including physical, chemical, and biological processes, with chemical methods, particularly substitution extraction using organic acids, showing promising results.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Neurosurgery, ChiaLi Chi Mei Medical Hospital, Tainan 722, Taiwan.
Background: Traumatic brain injury (TBI) research often focuses on mortality rates or functional recovery, yet the critical need for long-term care among patients dependent on institutional or Respiratory Care Ward (RCW) support remains underexplored. This study aims to address this gap by employing machine learning techniques to develop and validate predictive models that analyze the prognosis of this patient population.
Method: Retrospective data from electronic medical records at Chi Mei Medical Center, encompassing 2020 TBI patients admitted to the ICU between January 2016 and December 2021, were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!