Probing Alzheimer amyloid peptide aggregation using a cell-free fluorescent protein refolding method.

Biochem Cell Biol

Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada.

Published: August 2009

Fibrillation of the Alzheimer beta-amyloid peptide (Abeta) and (or) formation of toxic oligomers are key pathological events in Alzheimer's disease. Several strategies have been introduced to identify small molecule aggregation inhibitors, and based on these methods, a number of aggregation inhibitors have been identified. However, most of these methods use chemically synthesized Abeta42 peptides, which are difficult to maintain in a monomeric state at neutral pH where anti-aggregation screening is usually carried out. We have developed a cell-free Abeta42 aggregation assay based on fluorescence protein refolding. This assay utilizes nanomolar concentrations of protein. We genetically fused Abeta42 to the N-terminus of vYFP, a variant of of GFP, and expressed and purified the folded fusion protein. The refolding efficiency of Abeta42-vYFP fusion was inversely correlated with the solubility of Abeta42. Using fluorescence to monitor refolding of Abeta42-vYFP, we confirmed that Zn2+ binds to Abeta42 and increases its aggregation. The IC50 value estimated for Zn binding is 3.03 +/- 0.65 micromol/L. We also show that this technique is capable of monitoring the aggregation of chemically synthesized Abeta42.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o09-038DOI Listing

Publication Analysis

Top Keywords

protein refolding
12
aggregation inhibitors
8
chemically synthesized
8
synthesized abeta42
8
aggregation
6
abeta42
6
probing alzheimer
4
alzheimer amyloid
4
amyloid peptide
4
peptide aggregation
4

Similar Publications

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.

View Article and Find Full Text PDF

Thus far, no manufacturing process able to support industrialization has been reported for the recombinant human brain-derived neurotrophic factor (rhBDNF). Here, we described the setup of a new protocol for its production in () and its purification to homogeneity. A synthetic gene, codifying for the neurotrophin precursor, was inserted into an expression vector and transformed into BL21 (DE3) strain.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Revealing the mechanism underlying the viscosity improvement of rice protein yogurt by the presence of in-situ-produced dextrans.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:

The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!