Zeolites play a crucial part in acid-base heterogeneous catalysis. Fundamental insight into their internal architecture is of great importance for understanding their structure-function relationships. Here, we report on a new approach correlating confocal fluorescence microscopy with focused ion beam-electron backscatter diffraction, transmission electron microscopy lamelling and diffraction, atomic force microscopy and X-ray photoelectron spectroscopy to study a wide range of coffin-shaped MFI-type zeolite crystals differing in their morphology and chemical composition. This powerful combination demonstrates a unified view on the morphology-dependent MFI-type intergrowth structures and provides evidence for the presence and nature of internal and outer-surface barriers for molecular diffusion. It has been found that internal-surface barriers originate not only from a 90 degrees mismatch in structure and pore alignment but also from small angle differences of 0.5 degrees-2 degrees for particular crystal morphologies. Furthermore, outer-surface barriers seem to be composed of a silicalite outer crust with a thickness varying from 10 to 200 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat2530DOI Listing

Publication Analysis

Top Keywords

intergrowth structures
8
internal outer-surface
8
molecular diffusion
8
outer-surface barriers
8
morphology-dependent zeolite
4
zeolite intergrowth
4
structures leading
4
leading distinct
4
distinct internal
4
outer-surface molecular
4

Similar Publications

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Sci Rep

December 2024

Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.

To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.

View Article and Find Full Text PDF

Based on density functional theory calculations, we propose a new pathway toward compounds featuring flat [AgF] layers which mimic [CuO] layers in high-temperature oxocuprate superconductor precursors. Calculations predict the dynamic (phonon) and energetic stability of the new phases over diverse substrates. For some compounds with ferro orbital ordering, we find a gigantic intrasheet superexchange constant of up to -211 meV (DFT+) and -256 meV (SCAN), calculated for hypothetical (CsMgF)KAgF intergrowth.

View Article and Find Full Text PDF

Unlabelled: At temperatures above about 600 °C, alkali feldspar forms a continuous solid solution between the Na and K end members. Towards lower temperatures a miscibility gap opens, and alkali feldspar of intermediate composition exsolves, forming an intergrowth of relatively more Na-rich and K-rich lamellae. During exsolution, the crystal structure usually remains coherent across the lamellar interfaces, a feature that may be preserved over geological times.

View Article and Find Full Text PDF

Polymorph selection and efficient crystallization are central goals in zeolite synthesis. Crystalline seeds are used for both purposes. While it has been proposed that zeolite seeds induce interzeolite transformation by dissolving into structural units that promote nucleation of the daughter crystal, the seed's structural elements do not always match those of the target zeolite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!