Outbreaks of Escherichia coli infections linked to fermented meats have prompted much research into the kinetics of E. coli inactivation during fermented meat manufacture. A meta-analysis of data from 44 independent studies was undertaken that allowed the relative influences of pH, water activity (a(w)), and temperature on E. coli survival during fermented meat processing to be investigated. Data were reevaluated to determine rates of inactivation, providing 484 rate data points with various pH (2.8 to 6.14), a(w) (0.75 to 0.986), and temperature (-20 to 66 degrees C) values, product formulations, and E. coli strains and serotypes. When the data were presented as an Arrhenius model, temperature (0 to 47 degrees C) accounted for 61% of the variance in the ln(inactivation rate) data. In contrast, the pH or a(w) measured accounted for less than 8% of variability in the data, and the effects of other pH- and a(w)-based variables (i.e., total decrease and rates of reduction of those factors) were largely dependent on the temperature of the process. These findings indicate that although temperatures typically used in fermented meat manufacture are not lethal to E. coli per se, when other factors prevent E. coli growth (e.g., low pH and a(w)), the rate of inactivation of E. coli is dominated by temperature. In contrast, inactivation rates at temperatures above approximately 50 degrees C were characterized by smaller z values than those at 0 to 47 degrees C, suggesting that the mechanisms of inactivation are different in these temperature ranges. The Arrhenius model developed can be used to improve product safety by quantifying the effects of changes in temperature and/or time on E. coli inactivation during fermented meat manufacture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786527 | PMC |
http://dx.doi.org/10.1128/AEM.00291-09 | DOI Listing |
J Food Drug Anal
December 2024
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
In the current study, the effects of fermentation by Lactobacillus acidophilus, Levilactobacillus brevis or Lactiplantibacillus plantarum (La/Lb/Lp, 1-2.5%) and incubation (30/37 °C, C1/C2) of red beetroot juice on the profile of betalains and polyphenols (UHPLC-DAD-MS), and antioxidant capacity using photochemiluminescence (PCL) and spectrophotometric assays (DPPH/ABTS) was investigated. Additionally, anti-glycaemic (anti-AGEs) and anticholinergic (anti-AChE) potential in vitro was analysed.
View Article and Find Full Text PDFVet Sci
November 2024
CONAHCYT-UAM Xochimilco, Universidad Autónoma Metropolitana Xochimilco, Mexico City 04960, Mexico.
This study aimed to evaluate the effect of dietary supplementation with calcium propionate (CaPr) or sodium propionate (NaPr) on growth performance, ruminal fermentation, and meat quality of finishing lambs. Twenty-seven non-castrated Creole male lambs (24.95 ± 2.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed.
View Article and Find Full Text PDFPLoS One
December 2024
SILA Department, Institute of Health and Nature, Ilisimatusarfik-University of Greenland, Nuuk, Greenland.
The consumption of prey intestines and their content, known as gastrophagy, is well-documented among Arctic Indigenous peoples, particularly Inuit. In Greenland, Inuit consume intestines from various animals, including the ptarmigan, a small herbivorous grouse bird. While gastrophagy provides the potential to transfer a large number of intestinal microorganisms from prey to predator, including to the human gut, its microbial implications remain to be investigated.
View Article and Find Full Text PDFJ Nutr
December 2024
National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, 210095 China; College of Animal Science & Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:
Background: Rumen methane emissions (RME) significantly contribute to global greenhouse gas emissions, underscoring the essentials to identify effective inhibitors for RME mitigation. Despite various inhibitors shown potential in reducing RME by modulating rumen microbes, their impacts include considerable variations and inconsistency.
Objective: We aimed to quantitively assess the impacts of various methane inhibitors on RME, rumen microbial abundance and fermentation in ruminants.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!