A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons. | LitMetric

AI Article Synopsis

  • DSE (Depolarization-induced suppression of excitation) is a key form of cannabinoid-mediated short-term neuronal plasticity observed in various brain regions, with a transient duration likely linked to the breakdown of the endocannabinoid 2-AG.
  • Researchers focused on the roles of different enzymes in DSE regulation, particularly investigating the impact of specific inhibitors on the enzyme monoacylglycerol lipase (MGL), which was found to prolong DSE in hippocampal neurons, while alpha/beta-hydrolase 6 (ABHD6) showed no effect.
  • MGL is primarily located at presynaptic terminals, suggesting it plays a crucial role in degrading 2-AG to modulate endocannabinoid signaling and

Article Abstract

Depolarization-induced suppression of excitation (DSE) is a major form of cannabinoid-mediated short-term retrograde neuronal plasticity and is found in numerous brain regions. Autaptically cultured murine hippocampal neurons are an architecturally simple model for the study of cannabinoid signaling, including DSE. The transient nature of DSE--tens of seconds--is probably determined by the regulated hydrolysis of the endocannabinoid 2-arachidonoyl glycerol (2-AG). No less than five candidate enzymes have been considered to serve this role: fatty acid amide hydrolase (FAAH), cyclooxygenase-2 (COX-2), monoacylglycerol lipase (MGL), and alpha/beta-hydrolase domain (ABHD) 6 and 12. We previously found that FAAH and COX-2 do not have a role in determining the duration of autaptic DSE. In the current study, we found that two structurally distinct inhibitors of MGL [N-arachidonoyl maleimide and 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184)] prolong DSE in autaptic hippocampal neurons, whereas inhibition of ABHD6 by N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester, carbamic acid (WWL70) had no effect. In addition, we developed antibodies against MGL and ABHD6 and determined their expression in autaptic cultures. MGL is chiefly expressed at presynaptic terminals, optimally positioned to break down 2-AG that has engaged presynaptic CB(1) receptors. ABHD6 is expressed in two distinct locations on autaptic islands, including a prominent localization in some dendrites. In summary, we provide strong pharmacological and anatomical evidence that MGL regulates DSE in autaptic hippocampal neurons and, taken together with other studies, emphasizes that endocannabinoid signaling is terminated in temporally diverse ways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784730PMC
http://dx.doi.org/10.1124/mol.109.059030DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
16
autaptic hippocampal
12
monoacylglycerol lipase
8
depolarization-induced suppression
8
suppression excitation
8
dse autaptic
8
autaptic
6
dse
5
mgl
5
lipase limits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!