Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vitamin A deficiency, a global health burden, can be alleviated through provitamin A carotenoid biofortification of major crop staples such as maize (Zea mays) and other grasses in the Poaceae. If regulation of carotenoid biosynthesis was better understood, enhancement could be controlled by limiting beta-carotene hydroxylation to compounds with lower or no nonprovitamin A activity. Natural maize genetic diversity enabled identification of hydroxylation genes associated with reduced endosperm provitamin A content. A novel approach was used to capture the genetic and biochemical diversity of a large germplasm collection, representing 80% of maize genetic diversity, without having to sample the entire collection. Metabolite data sorting was applied to select a 10-line genetically diverse subset representing biochemical extremes for maize kernel carotenoids. Transcript profiling led to discovery of the Hydroxylase3 locus that coincidently mapped to a carotene quantitative trait locus, thereby prompting investigation of allelic variation in a broader collection. Three natural alleles in 51 maize lines explained 78% of variation and approximately 11-fold difference in beta-carotene relative to beta-cryptoxanthin and 36% of the variation and 4-fold difference in absolute levels of beta-carotene. A simple PCR assay to track and identify Hydroxylase3 alleles will be valuable for predicting nutritional content in genetically diverse cultivars found worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773064 | PMC |
http://dx.doi.org/10.1104/pp.109.145177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!