Background: We have developed a tissue-engineered patch for cardiovascular repair. Tissue-engineered patches facilitated site-specific in situ recellularization and required no pretreatment with cell seeding. This study evaluated the patches implanted into canine pulmonary arteries.
Methods: Tissue-engineered patches are biodegradable sheets woven with double-layer fibers. The fiber is composed of polyglycolic acid and poly-L-lactic acid, and compounding collagen microsponges. The patches (20- x 25-mm) were implanted into the canine pulmonary arterial trunks. At 1, 2, and 6 months after implantation (n = 4), they were explanted and characterized by histologic and biochemical analyses. Commercially available patches served as the control. No anticoagulant therapy was administered postoperatively.
Results: No aneurysm or thrombus was present within the patch area in all groups. The remodeled tissue predominantly consisted of elastic and collagen fibers, and the endoluminal surface was covered with a monolayer of endothelial cells and multilayers of smooth muscle cells beneath the endothelial layer. The elastic and collagen fibers and smooth muscle cells kept increasing with a maximum at 6 months, while a monolayer of endothelial cells was preserved. The expression levels of messenger RNA of several growth factors in the tissue-engineered patches were higher than those of native tissue at 1 and 2 months and decreased to normal level at 6 months. No regenerated tissue was found on the endoluminal surface in the control group.
Conclusions: The novel tissue-engineered patches showed in situ repopulation of host cells without prior ex vivo cell seeding. This is promising material for repair of the cardiovascular system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.athoracsur.2009.04.087 | DOI Listing |
Indian J Thorac Cardiovasc Surg
January 2025
Army Hospital R&R, Delhi, India.
Aim: To evaluate the short-term outcomes of Tissue Engineered Decellularized Bovine pericardium (Synkroscaff®) in congenital heart surgery as a prosthetic material.
Methodology: This is a prospective observational cohort study. SynkroScaff® was used as prosthetic material in cohort of successive patients under 18 years of age requiring cardiac surgery for congenital heart diseases.
Int J Biol Macromol
January 2025
Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, China.. Electronic address:
Adv Healthc Mater
November 2024
Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
Pediatr Cardiol
November 2024
Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
The modern congenital heart surgeon has an array of materials available for cardiovascular repair. With advancements in the surgical outcomes for pediatric cardiac defects, choice of material has become increasingly dependent on late-term complications associated with each material. Calcification is a leading long-term complication and is increasing in prevalence with materials lasting longer in patients.
View Article and Find Full Text PDFClin Orthop Relat Res
December 2024
Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
Background: Massive rotator cuff defects represent an important source of shoulder pain and functional debilitation, substantially diminishing patients' quality of life. The primary treatment of massive rotator cuff defects includes complete or partial repair and patch augmentation. However, because of the tendon's limited regenerative ability, the tendon retear risk after rotator cuff defect repair is still high.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!