Background: We have developed a tissue-engineered patch for cardiovascular repair. Tissue-engineered patches facilitated site-specific in situ recellularization and required no pretreatment with cell seeding. This study evaluated the patches implanted into canine pulmonary arteries.

Methods: Tissue-engineered patches are biodegradable sheets woven with double-layer fibers. The fiber is composed of polyglycolic acid and poly-L-lactic acid, and compounding collagen microsponges. The patches (20- x 25-mm) were implanted into the canine pulmonary arterial trunks. At 1, 2, and 6 months after implantation (n = 4), they were explanted and characterized by histologic and biochemical analyses. Commercially available patches served as the control. No anticoagulant therapy was administered postoperatively.

Results: No aneurysm or thrombus was present within the patch area in all groups. The remodeled tissue predominantly consisted of elastic and collagen fibers, and the endoluminal surface was covered with a monolayer of endothelial cells and multilayers of smooth muscle cells beneath the endothelial layer. The elastic and collagen fibers and smooth muscle cells kept increasing with a maximum at 6 months, while a monolayer of endothelial cells was preserved. The expression levels of messenger RNA of several growth factors in the tissue-engineered patches were higher than those of native tissue at 1 and 2 months and decreased to normal level at 6 months. No regenerated tissue was found on the endoluminal surface in the control group.

Conclusions: The novel tissue-engineered patches showed in situ repopulation of host cells without prior ex vivo cell seeding. This is promising material for repair of the cardiovascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2009.04.087DOI Listing

Publication Analysis

Top Keywords

tissue-engineered patches
16
cell seeding
12
developed tissue-engineered
8
implanted canine
8
canine pulmonary
8
elastic collagen
8
collagen fibers
8
endoluminal surface
8
monolayer endothelial
8
endothelial cells
8

Similar Publications

Aim: To evaluate the short-term outcomes of Tissue Engineered Decellularized Bovine pericardium (Synkroscaff®) in congenital heart surgery as a prosthetic material.

Methodology: This is a prospective observational cohort study. SynkroScaff® was used as prosthetic material in cohort of successive patients under 18 years of age requiring cardiac surgery for congenital heart diseases.

View Article and Find Full Text PDF

Enhancing epithelial regeneration with gelatin methacryloyl hydrogel loaded with extracellular vesicles derived from adipose mesenchymal stem cells for decellularized tracheal patching.

Int J Biol Macromol

January 2025

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, China.. Electronic address:

Article Synopsis
  • Patch tracheoplasty is an alternative technique for treating congenital tracheal stenosis, which reduces tension during repair but has a higher risk of complications like restenosis and tracheal collapse.
  • The study explores using a new decellularization method with CHAPS and DNase to create a biocompatible tracheal matrix and enhance epithelial regeneration using extracellular vesicles from adipose mesenchymal stem cells.
  • Experimental results showed that this method improved cell proliferation and re-epithelialization in both lab testing and animal models, indicating potential for clinical application in repairing tracheal defects.
View Article and Find Full Text PDF
Article Synopsis
  • Corneal transplantation is a common solution for corneal blindness but faces challenges like limited donor availability and complicated surgical procedures.
  • A new multifunctional hydrogel corneal patch (MHCP) has been developed, which uses temperature and light to adhere to the cornea, mimicking natural tissue properties.
  • MHCP shows promising results in improving corneal cell growth, maintaining transparency, and enhancing surgical ease, suggesting it could be a valuable alternative in clinical settings.
View Article and Find Full Text PDF

The modern congenital heart surgeon has an array of materials available for cardiovascular repair. With advancements in the surgical outcomes for pediatric cardiac defects, choice of material has become increasingly dependent on late-term complications associated with each material. Calcification is a leading long-term complication and is increasing in prevalence with materials lasting longer in patients.

View Article and Find Full Text PDF

Tissue-engineered Bicipital Autologous Tendon Patch Enhances Massive Rotator Cuff Defect Repair in a Rabbit Infraspinatus Tendon Defect Model.

Clin Orthop Relat Res

December 2024

Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.

Background: Massive rotator cuff defects represent an important source of shoulder pain and functional debilitation, substantially diminishing patients' quality of life. The primary treatment of massive rotator cuff defects includes complete or partial repair and patch augmentation. However, because of the tendon's limited regenerative ability, the tendon retear risk after rotator cuff defect repair is still high.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!