Insulin-like growth factor-1 (IGF-1) is a multifunctional peptide of which numerous isoforms exist. The predominant form, IGF-1Ea is involved in physiological processes while IGF-1Ec (mechano-growth factor, MGF) is expressed in response to a different set of stimuli. We have identified specific changes in the expression patterns of these IGF-1 variants in brain development in normal rats and following neonatal hypoxia-ischaemia (HI). Both IGF-1Ea and IGF-1Ec are expressed during normal postnatal brain development, albeit with highly specific temporal distributions. In contrast, HI produced increased and prolonged expression of the IGF-1Ec isoform only. Importantly, hypoxia alone stimulated the expression of IGF-1Ec as well. Thus, IGF-1Ec may play a role in HI pathology. Neonatal hypoxia-ischaemia occurs in approximately 1:4000-1:10,000 newborns and causes neurological deficits in approximately 75% of those affected. Unfortunately, no specific treatment is available. IGF-1 is known to have neuroprotective activity and its IGF-1Ec variant appears to be an endogenous protective factor in hypoxia-ischaemia. Therefore, IGF-1Ec could potentially be developed into a therapeutic modality for the attenuation or prevention of neuronal damage in this and related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2009.09.002DOI Listing

Publication Analysis

Top Keywords

brain development
12
neonatal hypoxia-ischaemia
12
changes expression
8
insulin-like growth
8
postnatal brain
8
expression igf-1ec
8
igf-1ec
7
expression insulin-like
4
growth factor
4
factor variants
4

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Establishing functionally segregated dopaminergic circuits.

Trends Neurosci

January 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!