Evaluation of bone-tendon junction healing using water jet ultrasound indentation method.

Ultrasound Med Biol

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

Published: November 2009

The re-establishment of bone-tendon junction (BTJ) tissues with the junction, characterized as a unique transitional fibrocartilage zone, is involved in many trauma and reconstructive surgeries. Experimental and clinical findings have shown that a direct BTJ repair requires a long period of immobilization, which may be associated with a postoperative weak knee. Therefore, it is necessary to evaluate the morphologic and mechanical properties of BTJ tissues in situ to better understand the healing process for the purpose of reducing the adverse effects of immobilization. We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this article, we used ultrasound water jet indentation to evaluate the BTJ healing process. The system's capability of measuring the material elastic modulus was first validated using tissue-mimicking phantoms. Then it was employed to assess the healing of the BTJ tissues after partial patellectomy over time on twelve 18-week-old female New Zealand White rabbits. It was found that in comparison with the normal control samples, the elastic modulus of the fibrocartilage of the postoperative samples was significantly smaller, while its thickness increased significantly. Among the postoperative sample groups, the elastic modulus of the fibrocartilage of the samples harvested at week 18 was significantly higher than those harvested at week 6 and week 12, which was even comparable with the value of the control samples at the same sacrifice time. The results suggested that the noncontact ultrasound water jet indentation system provided a nondestructive way to evaluate the material properties of small animal tissues in situ and thus had the ability to evaluate the healing process of BTJ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.06.1093DOI Listing

Publication Analysis

Top Keywords

water jet
20
btj tissues
12
healing process
12
ultrasound water
12
jet indentation
12
elastic modulus
12
bone-tendon junction
8
mechanical properties
8
tissues situ
8
noncontact ultrasound
8

Similar Publications

Evolving technology and the development of new devices that can aerosolize water present a risk for new sources of Legionella bacteria growth and spread within industrial settings. We investigated a cluster of legionellosis among employees of a manufacturing facility in South Carolina, USA, and found 2 unique equipment sources of Legionella bacteria. The cluster of cases took place during August-November 2022; a total of 34 cases of legionellosis, including 15 hospitalizations and 2 deaths, were reported.

View Article and Find Full Text PDF

Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.

View Article and Find Full Text PDF

Prefilled syringes (PFS) are primary packaging materials that offer convenience and safety for subcutaneous injection of parenteral drug solutions. However, an increasingly common problem with the trend towards higher drug concentrations is the clogging of the needle during storage due to evaporative water loss and consequent solidification of the drug. In contrast to all previous studies on this topic, this work focuses on pharmacokinetically relevant aspects and investigates the effects of needle clogging on the spatial distribution of the injected drug in the tissue.

View Article and Find Full Text PDF

Innovative CO-NBs-assisted ultrasonication for the phytochemical extraction of peanut (Arachis hypoga) shells: Synthesis and characterization of CO-nanobubbles.

Ultrason Sonochem

December 2024

College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR. China. Electronic address:

This study was designed to obtain the maximum extraction yield of peanut shell (PS) polyphenols using a novel carbon dioxide nanobubbles (CO-NBs) assisted ultrasonic extraction method. CO-NBs were generated in distilled water with a self-developed high-pressure nano-jet homogenization method and characterized by size, zeta potential and transmission electron microscopy (TEM). The obtained nanobubble's mean size and zeta potential were 229.

View Article and Find Full Text PDF

Outbreaks of COVID-19 in humans, Dutch elm disease in forests, and highly pathogenic avian influenza in wild birds and poultry highlight the disruptive impacts of infectious diseases on public health, ecosystems and economies. Infectious disease dynamics often depend on environmental conditions that drive occurrence, transmission and outbreaks. Remote sensing can contribute to infectious disease research and management by providing standardized environmental data across broad spatial and temporal extents, often at no cost to the user.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!