Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells.

Toxicol Appl Pharmacol

Centro de Investigación en Salud Poblacional, INSP, Cuernavaca, Morelos, México.

Published: December 2009

There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 microM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (<5 microM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (> or =5 microM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2009.09.006DOI Listing

Publication Analysis

Top Keywords

mt1/2 c-myc
16
protein levels
16
sodium arsenite
8
c-myc protein
8
mcf-7 cells
8
s-phase recruitment
8
mthfr
6
levels
6
mt1/2
5
c-myc
5

Similar Publications

Background: Metallothioneins (MT1, MT2, MT3, and MT4) are regarded as modulators regulating a number of biological processes including cell proliferation, differentiation, and invasion. We determined the effects of androgen, cadmium, and arsenic on MT1/2 and MT3 in prostate carcinoma cells, and evaluated the functional effects of MT3 on cell proliferation, invasion, and tumorigenesis.

Methods: We determined the expression of MT1/2 and MT3 in prostate carcinoma cells by immunoblotting assays or real-time reverse transcription-polymerase chain reactions.

View Article and Find Full Text PDF

There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 microM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!