Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proteins embedded in membranes are important for helping the cell adapt to changes in the extracellular milieu and often play key roles in the life cycles of pathogenic microbes. Bioinformatic predictions can provide an estimate of membrane proteins, but experimental approaches of detection are required for a deeper understanding of their functions. To determine the effectiveness of experimental detection approaches, here we collate and discuss data from available proteomic analyses on the inner (or cytoplasmic) membrane of Escherichia coli. We compile a list of proteins that have been experimentally detected and by comparing this to a predicted proteome we identify membrane proteins that have eluded us experimentally. Limitations of current proteomic analyses together with possible solutions are discussed. We also provide a list of proteins for benchmarking the performance of future proteomic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tim.2009.07.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!