Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2009.07.067 | DOI Listing |
In Silico Pharmacol
January 2025
Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka 570015 India.
Unlabelled: Parkinson's Disease (PD) is a neurodegenerative disorder that primarily affects persons aged 65 and older. It leads to a decline in motor function as a result of the buildup of abnormal protein deposits called Lewy bodies in the brain. Existing therapies exhibit restricted effectiveness and undesirable side effects.
View Article and Find Full Text PDFNeurol Clin Pract
October 2024
Department of Neurology (AM, YB, SLP), David Geffen School of Medicine; Institute for Society and Genetics (AM); Interdepartmental Undergraduate Neuroscience Program (AM), UCLA; Division of General Internal Medicine (ACO), Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Neurology (YB), Cedars Sinai Health Center, Los Angeles, CA; and Division of General Internal Medicine and Health Services Research (AB), Department of Medicine, David Geffen School of Medicine, UCLA.
Background And Objectives: There are well-documented racial and ethnic disparities in access to neurologic care and disease-specific outcomes. Although contemporary clinical and neurogenetic understanding of Huntington disease (HD) is thanks to a decades-long study of a Venezuelan cohort, there are a limited number of studies that have evaluated racial and ethnic disparities in HD. The goal of this study was to evaluate disparities in time from symptom onset to time of diagnosis of HD.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Objective: To investigate changes of brain functional activity in patients with acute unilateral vestibulopathy (AUVP) using functional magnetic resonance imaging (fMRI).
Methods: We studied 32 AUVP patients and 30 healthy controls (HC) who received resting-state fMRI scanning. Methods of voxel-based amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were adopted to compare the difference in brain function between the two groups.
Front Neurol
January 2025
Department of Human Neurosciences, Sapienza University, Rome, Italy.
Background/aims: Oro-pharyngeal dysfunction has been reported in Amyotrophic Lateral Sclerosis (ALS). We aimed to assess ALS patients upper gastrointestinal (GI) motor activity and GI symptoms according to bulbar and spinal onset and severity of ALS.
Methods: ALS bulbar (B) and spinal (S) patients with ALS Functional Rating Scale (ALSFRS-r) ≥35, bulbar sub-score ≥10, and Forced Vital Capacity (FVC) >50%, underwent to: Fiberoptic Endoscopic Evaluation of Swallowing (FEES); esophageal manometry; gastric emptying; Rome symptom questionnaire.
Clin Nutr ESPEN
January 2025
Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; Nutrition and Food Research Center, University of Turku, 20014 Turku, Finland.
Background And Aims: Maternal diet and health may influence a child's later neurodevelopment. We investigated the effect of maternal diet, adiposity, gestational diabetes mellitus (GDM), and depressive/anxiety symptoms during pregnancy on the child's motor outcome at 5-6 years.
Methods: The motor performance of 159 children of women with overweight or obesity (pre-pregnancy body mass index 25-29.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!