Previously we have reported adipose-tissue derived human mesenchymal stem cells (AT-MSC) as cellular delivery vehicles for tumor-targeted cancer gene therapy. In this report we aimed to determine whether Herpes simplex virus - thymidine kinase (HSV-tk) expressing AT-MSC (TK-MSC) could exert cytotoxic effect on tumor cells upon treatment with prodrug ganciclovir (GCV). Direct co-cultures of human glioblastoma cells 8-MG-BA, 42-MG-BA and U-118 MG with TK-MSC/GCV resulted in substantial viability decrease in vitro. This therapeutic paradigm was most efficient against 8-MG-BA glioblastoma cells exhibiting cytotoxicity (>50%) in the presence of TK-MSC and 0.1microM GCV. Rapid apoptosis induction in three glioblastoma cell lines and TK-MSC demonstrated both bystander cytotoxic effect on tumor cells and GCV conversion-mediated suicide effect on TK-MSC. Furthermore, we were able to demonstrate formation of gap junctions between AT-MSC and human glioblastoma cells as a mechanism contributing to bystander cytotoxicity. Inability of human HeLa and MCF7 to form gap junctions with AT-MSC rendered these cell refractory to the TK-MSC/GCV mediated cytotoxicity. Gap junction intercellular communication (GJIC) capability of AT-MSC with tumor cells further supports the exploitation of mesenchymal stem cells for approaches relying on the bystander effect. Biological consequences of these capabilities remain to be further explored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2009.08.028DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
16
mesenchymal stem
12
stem cells
12
human glioblastoma
12
tumor cells
12
cells
10
hsv-tk expressing
8
cytotoxic tumor
8
gap junctions
8
junctions at-msc
8

Similar Publications

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.

Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.

View Article and Find Full Text PDF

Exploring the various functions of PHD finger protein 20: beyond the unknown.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.

Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!