In this work, pulp mill wastewater was treated using a novel copolymer flocculant with a high water-solubility, which was synthesized through grafting (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) onto chitosan initiated by potassium persulphate. The experimental results demonstrate that the two main problems associated with the utilization of chitosan as a flocculant, i.e., low molecular weight and low water-solubility, were concurrently sorted out. The physicochemical properties of this flocculant were characterized with Fourier-transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy. Reaction parameters influencing the grafting percentage, such as temperature, reaction time, initiator concentration and monomer concentration, were optimized using an orthogonal array design matrix. With an increase in grafting percentage, the water-solubility of the flocculant was improved, and it became thoroughly soluble in water when the grafting percentage reached 236.4% or higher. Its application for the treatment of pulp mill wastewater indicates that it had an excellent flocculation capacity and that its flocculation efficiency was much better than that of polyacrylamide. The optimal conditions for the flocculation treatment of pulp mill wastewater were also obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2009.08.040DOI Listing

Publication Analysis

Top Keywords

pulp mill
16
mill wastewater
16
grafting percentage
12
flocculant high
8
high water-solubility
8
treatment pulp
8
flocculant
5
synthesis characterization
4
characterization novel
4
novel cationic
4

Similar Publications

The pulp and paper industry, a major global sector, supports economies and jobs while contributing to various products. While providing valuable products, and despite Best Available Techniques (BAT) being used, managing wastewater effectively remains a key area for developing technologies and alternatives for environmental protection. Activated sludge (AS) systems are commonly used for effluent treatment, where microorganisms composition influences reactor efficiency.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

The red prickly pear fruit ( L. Mill), endemic from Mexico's semi-desert regions and present in North Africa and Southern Europe, particularly Italy and Spain, is a valuable source of nutrients, bioactive compounds, and polysaccharides. This study used non-destructive techniques like microscopy and Raman and infrared (IR) spectroscopy to characterize polysaccharides extracted from two red prickly pear varieties.

View Article and Find Full Text PDF

Polymorphism and Microstructural Changes in Avocado Pulp ( Mill.) After Scraped-Surface Heat Exchanger Processing.

Foods

November 2024

Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico.

Avocado ( Mill.) is a fruit with a high content of unsaturated fatty acids and bioactive compounds, whose consumption has considerably increased in the USA and Europe. Thus, the conservation of the avocado mesocarp (pulp) has become more relevant.

View Article and Find Full Text PDF

Empty fruit bunch (EFB), an abundant lignocellulosic residue from the palm oil milling process, is typically discarded on open land or used as mulch. In this work, a simple method that mimics a papermaking process, was developed to upcycle EFB into higher value fibreboard without the need for any polymeric binders. The cellulose network from pulp fibres was utilised to hold the otherwise loose EFB fibres together to produce a rigid EFB fibreboard.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!