Objective: Regulatory T cells are crucial for immune homeostasis and an impaired regulatory T cell function results in many pathological conditions. Regulatory T cells have already been described to be protective in atherosclerosis. However the exact contribution of Foxp3-expressing natural regulatory T cells in atherosclerosis has not been elucidated yet.
Methods And Results: In this study we vaccinated LDL receptor deficient mice with dendritic cells which are transfected with Foxp3 encoding mRNA and studied the effect on initial atherosclerosis. Vaccination against Foxp3 resulted in a reduction of Foxp3(+) regulatory T cells in several organs and in an increase in initial atherosclerotic lesion formation. Furthermore we observed an increase in plaque cellularity and increased T cell proliferation in the Foxp3 vaccinated mice.
Conclusion: We further establish the protective role of Tregs in atherosclerosis. The results illustrate the important role for Foxp3-expressing regulatory T cells in atherosclerosis, thereby providing a potential opportunity for therapeutic intervention against this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.041 | DOI Listing |
Elife
January 2025
Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFFASEB J
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China.
Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.
View Article and Find Full Text PDFJ Exp Med
March 2025
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!