Scratching the niche that controls Caenorhabditis elegans germline stem cells.

Semin Cell Dev Biol

Department of Biochemistry and Howard Hughes Medical Institute, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.

Published: December 2009

The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820558PMC
http://dx.doi.org/10.1016/j.semcdb.2009.09.005DOI Listing

Publication Analysis

Top Keywords

niche controls
8
caenorhabditis elegans
8
germline stem
8
stem cells
8
scratching niche
4
controls caenorhabditis
4
elegans germline
4
cells caenorhabditis
4
elegans gonad
4
gonad well-defined
4

Similar Publications

A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

Oncogene

January 2025

Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.

View Article and Find Full Text PDF

Household waste-specific ambient air shows greater inhalable antimicrobial resistance risks in densely populated communities.

Waste Manag

January 2025

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:

Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.

View Article and Find Full Text PDF

Domestic cats () currently occupy the 38th place in the Global Invasive Species Database. Free-roaming cats potentially have broad-ranging impacts on wildlife, occupying most terrestrial environments globally as house pets, strays, or feral animals. In Australia, for example, cats are responsible for the decline in many vertebrate populations and extinction of several native mammals.

View Article and Find Full Text PDF

Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.

Trends Biotechnol

January 2025

Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium. Electronic address:

Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!