G protein Galpha subunits contribute to the specificity of different signal transduction pathways in Dictyostelium discoideum but Galpha subunit-effector interactions have not been previously identified. The requirement of the Dictyostelium Galpha4 subunit for MAP kinase (MAPK) activation and the identification of a putative MAPK docking site (D-motif) in this subunit suggested a possible interaction between the Galpha4 subunit and MAPKs. In vivo association of the Galpha4 subunit and ERK2 was demonstrated by pull-down and co-immunoprecipitation assays. Alteration of the D-motif reduced Galpha4 subunit-ERK2 interactions but only slightly altered MAPK activation in response to folate. Expression of the Galpha4 subunit with the altered D-motif in galpha4(-)cells allowed for slug formation but not the morphogenesis associated with culmination. Expression of this mutant Galpha4 subunit was sufficient to rescue chemotactic movement to folate. Alteration of the D-motif also reduced the aggregation defect associated with constitutively active Galpha4 subunits. These results suggest Galpha4 subunit-MAPK interactions are necessary for developmental morphogenesis but not for chemotaxis to folate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783421PMC
http://dx.doi.org/10.1016/j.ydbio.2009.09.011DOI Listing

Publication Analysis

Top Keywords

galpha4 subunit
20
galpha4
9
map kinase
8
developmental morphogenesis
8
mapk activation
8
alteration d-motif
8
d-motif reduced
8
subunit
7
d-motif
5
galpha4 protein
4

Similar Publications

The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria.

View Article and Find Full Text PDF

The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.

Cell Signal

January 2015

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA. Electronic address:

Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate.

View Article and Find Full Text PDF

Cyclic AMP (cAMP) is an important intracellular signaling molecule for many G protein-mediated signaling pathways but the specificity of cAMP signaling in cells with multiple signaling pathways is not well-understood. In Dictyostelium, at least two different G protein signaling pathways, mediated by the Gα2 and Gα4 subunits, are involved with cAMP accumulation, spore production, and chemotaxis and the stimulation of these pathways results in the activation of ERK2, a mitogen-activated protein kinase that can down regulate the cAMP-specific phosphodiesterase RegA. The regA gene was disrupted in gα2(−) and gα4(−) cells to determine if the absence of this phosphodiesterase rescues the development of these G protein mutants as it does for erk2(−) mutants.

View Article and Find Full Text PDF

G protein Galpha subunits contribute to the specificity of different signal transduction pathways in Dictyostelium discoideum but Galpha subunit-effector interactions have not been previously identified. The requirement of the Dictyostelium Galpha4 subunit for MAP kinase (MAPK) activation and the identification of a putative MAPK docking site (D-motif) in this subunit suggested a possible interaction between the Galpha4 subunit and MAPKs. In vivo association of the Galpha4 subunit and ERK2 was demonstrated by pull-down and co-immunoprecipitation assays.

View Article and Find Full Text PDF

Steroids initiate a signaling cascade that triggers rapid sporulation in Dictyostelium.

Development

March 2009

Center for Molecular Genetics, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Encapsulation of prespore cells of Dictyostelium discoideum is controlled by several intercellular signals to ensure appropriate timing during fruiting body formation. Acyl-CoA-binding protein, AcbA, is secreted by prespore cells and processed by the prestalk protease TagC to form the 34 amino acid peptide SDF-2 that triggers rapid encapsulation. AcbA is secreted when gamma-aminobutyric acid (GABA) is released from prespore cells and binds to GrlE, a G protein-coupled receptor (GPCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!