Insulin-like growth factor binding protein-1 (IGFBP-1) is the major secreted protein of human decidual cells during gestation and, as a modulator of insulin-like growth factors or by independent mechanisms, regulates embryonic implantation and growth. The protein is phosphorylated and this post-translational modification is regulated in pregnancy and represents an important determinant of its biological activity. We have isolated, from human normal amniotic fluid collected in the weeks 16-18, the intact nonphosphorylated IGFBP-1 and five electrophoretically distinct phosphoisoforms and have determined their in vivo phosphorylation state. The unmodified protein was the most abundant component and mono-, bi-, tri- and tetraphosphorylated forms were present in decreasing amounts. The phosphorylation sites of IGFBP-1 were identified by liquid chromatography-tandem mass spectrometry analysis of the peptides generated with trypsin, chymotrypsin and Staphylococcus aureus V8 protease. Five serines were found to be phosphorylated and, of these, four are localized in the central, weakly conserved, region, at positions 95, 98, 101 and 119, whereas one, Ser169, is in the C-terminal domain. The post-translational modification predominantly involves the hydrophilic stretch of amino acids representing a potential PEST sequence (proline, glutamic acid, serine, threonine) and our results show that the phosphorylation state influences the propensity of IGFBP-1 to proteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2009.07318.xDOI Listing

Publication Analysis

Top Keywords

insulin-like growth
12
amniotic fluid
8
growth factor
8
factor binding
8
binding protein-1
8
phosphorylation sites
8
post-translational modification
8
phosphorylation state
8
identification amniotic
4
fluid insulin-like
4

Similar Publications

Objective: This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma.

Methods: Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent type of dementia. Treatments for AD do not reverse the loss of brain function; rather, they decrease the rate of cognitive deterioration. Current treatments are ineffective in part because they do not address neurotrophic mechanisms, which are believed to be critical for functional recovery.

View Article and Find Full Text PDF

Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids.

View Article and Find Full Text PDF

Reduced PI3K(p110α) induces atrial myopathy, and PI3K-related lipids are dysregulated in athletes with atrial fibrillation.

J Sport Health Sci

January 2025

Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton, VIC 3800, Australia; Heart Research Institute, Newtown, NSW 2042, Australia. Electronic address:

Background: Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!