This article describes the optimal conditions for the enzymatic hydrolysis of chitosan and its chemically-modified derivatives using the preparation extracted from the king crab hepatopancrease possessing pronounced hydrolythic activity. The following preparations were used: chitosan with a molecular weight of 100 kDa and an acetylation level of 0.15, carboxymethyl chitosan 200 kDa witih an extent of replacement of 0.23, and N-succinyl chitosan 390 kDa with an extent of replacement of 0.8. Low molecular-weight samples of chitosan and of its modified derivatives were obtained with the yields of 85, 55, and 80%, respectively. The conditions of the hydrolysis were as follows: an enzyme: substrate ratio of 1:200, 37 degrees C, and 20 h duration of hydrolysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

low molecular-weight
8
king crab
8
extent replacement
8
chitosan
6
[the enzymatic
4
enzymatic preparation
4
preparation production
4
production low
4
molecular-weight chitosan
4
chitosan king
4

Similar Publications

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions.

J Am Chem Soc

January 2025

George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization.

View Article and Find Full Text PDF

Impact of endometrial thickness and its combined effect with maternal age on singleton adverse neonatal outcomes in frozen-thawed embryo transfer cycles.

Front Endocrinol (Lausanne)

January 2025

Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Thin endometrial thickness (EMT) and advanced age are both common risk factors for adverse neonatal outcomes (ANOs). However, studies evaluating the impact of EMT and combined effect of EMT and age on ANOs remain scarce with conflicts.

Method: A retrospective cohort study was conducted on 7,715 singleton deliveries from frozen embryo transfer (FET) cycles between 2017 and 2021.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Objectives: Soybeans have various positive effects on health, including anti-inflammatory and preventing kidney damage. There is concern regarding the phytoestrogen content due to the high isoflavone content in soybeans. Various forms of soybean processing have been tried; in this study, the hydrolysis method will be used to obtain the active substance Arginine-Glycine-Aspartate (RGD) tripeptide in soybean protein hydrolyzed by bromelain (SPHB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!