Adipose tissue development undergoes remodeling in terms of newly synthesized cells (hyperplasia) and newly synthesized lipids that accumulate in adipocytes (hypertrophy). Synthesis and/or breakdown rates of adipose cells and lipids follow a continuous and dynamic pattern, e.g., during obesity development. This chapter describes a unique in vivo method to measure the dynamics of adipose tissue growth using 2H2O labeling and mass spectrometry analyses. The approach uses 2H2O as a metabolic tracer to label the adipose tissue components such as the triglycerides (TG), the fatty acids, and the genomic DNA. Deuterium from 2H2O incorporates in the C-H bonds of glycerol moiety of TG through glyceroneogenesis as well as in palmitate moiety through de novo lipogenesis (DNL). Deuterium also incorporates into DNA through the de novo nucleoside synthesis pathway. The labeled water, 2H2O, is administrated intraperitoneally and/or orally in rodents or in humans for a defined duration and biopsies are collected at the end of the labeling period. We describe the procedure to extract, isolate, and purify the adipose components (TG-glycerol, TG-palmitate, and genomic DNA) and the derivation procedure to analyze the isotopic 2H-enrichment of these components by gas chromatography/mass spectrometry. The calculation principles are described to obtain the fractional and absolute synthesis rates of TG, of DNL, and of DNA measured in the adipose tissues. The method is nonradioactive, nonhazardous, accurate, reproducible, and very sensitive. We present recent in vivo data on the ontogeny of adipose tissue growth dynamics in young and adult obese Zucker rats compared with lean Zucker rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-322-0_17 | DOI Listing |
Nat Med
January 2025
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI).
View Article and Find Full Text PDFSci Rep
January 2025
Innovation Centre of Nursing Research, TaiHe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
The literature has documented conflicting and inconsistent associations between muscle-to-fat ratios and metabolic diseases. Additionally, different adipose tissues can have contrasting effects, with visceral adipose tissue being identified as particularly harmful. This study aimed to explore the relationship between the ratio of the lean mass index (LMI) to the visceral fat mass index (VFMI) and cardiometabolic disorders, including dyslipidemia, hypertension, and diabetes, as previous research on this topic is lacking.
View Article and Find Full Text PDFNPJ Aging
January 2025
Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.
Over the past five years, systemic NAD (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.
View Article and Find Full Text PDFSLAS Discov
January 2025
Bonds Biosystems, 27 Strathmore Rd, Natick, MA, USA. Electronic address:
Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.
View Article and Find Full Text PDFBiochimie
January 2025
Jagiellonian University Medical College, Faculty of Health Sciences, Department of Medical Physiology, Chair of Biomedical Sciences, 12 Michalowskiego st., 33-332 Cracow, Poland.
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!