We present the first synthesis of calix[4]arene-based S-glycoclusters via photoinduced multiple thiol-ene coupling of tetra- and octa-allyl calix[4]arenes with peracetylated glucosyl thiol (67-88% yields). Moreover we describe the dual clustering at the upper and lower rim of a calix[4]arene with two different sugars (galactose and glucose) via sequential copper(i)-catalyzed azide-alkyne cycloaddition and photoinduced thiol-ene coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b912686d | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry, Iowa State University, Ames, IA, 50011, USA. Electronic address:
Background: Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Centro de Investigación en Química Aplicada, Department of Macromolecular Chemistry and Nanomaterials, Blvd Enrique Reyna #140, Saltillo 25294, Mexico.
Three novel bio-based monomers were synthesized through an amidation reaction involving allylated derivatives of coumaric, ferulic and phloretic acid and a diamine obtained from a thiol-ene coupling reaction between limonene and cysteamine. The monomers containing the enone bond of the cinnamic moiety underwent photoisomerization and photocycloaddition reactions upon UV light irradiation. All three monomers were photocured via thiol-ene photopolymerization using a glycerol-derived trifunctional thiol, resulting in fully bio-based poly(amide-thioether)s.
View Article and Find Full Text PDFLangmuir
November 2024
Department of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
Strategies to design multifunctional interfaces for biosensors have been extensively investigated to acquire optimal sensitivity, specificity, and accuracy. However, heterogeneous ingredients in clinical samples inevitably generate background signals, exposing challenges in biosensor performance. Polymer coating has been recognized as a crucial method to functionalize biointerfaces by providing tailored properties that are essential for interacting with biological systems.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
Dynamic polymer materials can be obtained by introducing supramolecular interactions between the polymer chains. Here we report on the preparation and mechanical properties of poly(methyl acrylate) (PMA) and poly(-butyl acrylate) (PBA) funcionalized with ureidopyrimidinone (UPy) in the side chains. In contrast to the traditional UPy with a methyl group, the selected UPy motif contained a branched alkyl side chain, which enhances solubility, compatibility with the polymer matrix and potentially prevents stacking of UPy dimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!