Hybrid films of bio-templated gold nanowires and chemical bath deposited nanocrystalline CdSe were fabricated. The conductivity of the gold nanowires within the hybrid material was controlled by gold electroless deposition. Photocurrent measurements were taken on gold nanowire films, CdSe chemical bath deposited films, and hybrid films. The incorporation of gold nanowires within the hybrid material clearly increased the extraction of photogenerated carriers within the CdSe. Photocurrent showed a direct correlation with gold nanowire conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/41/415206DOI Listing

Publication Analysis

Top Keywords

gold nanowires
16
hybrid films
12
films bio-templated
8
bio-templated gold
8
nanocrystalline cdse
8
chemical bath
8
bath deposited
8
nanowires hybrid
8
hybrid material
8
gold nanowire
8

Similar Publications

Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.

View Article and Find Full Text PDF

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Silver nanowire/gold nanosphere binary plasma-assembled membranes for sensitive SERS detection of homocysteine.

Mikrochim Acta

December 2024

School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.

Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.

View Article and Find Full Text PDF

Electric field-induced alignment of Ag/Au nanowires for ultrasensitive in situ detection of Interleukin-6.

Biosens Bioelectron

March 2025

School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Shandong Institute of Mechanical Design and Research, Jinan, 250353, China. Electronic address:

Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!