Bregman divergences and surrogates for learning.

IEEE Trans Pattern Anal Mach Intell

Université Antilles-Guyane, CEREGMIA-UFR Droit et Sciences Economiques, Campus de Schoelcher, Schoelcher Cedex, Martinique, France.

Published: November 2009

Bartlett et al. (2006) recently proved that a ground condition for surrogates, classification calibration, ties up their consistent minimization to that of the classification risk, and left as an important problem the algorithmic questions about their minimization. In this paper, we address this problem for a wide set which lies at the intersection of classification calibrated surrogates and those of Murata et al. (2004). This set coincides with those satisfying three common assumptions about surrogates. Equivalent expressions for the members-sometimes well known-follow for convex and concave surrogates, frequently used in the induction of linear separators and decision trees. Most notably, they share remarkable algorithmic features: for each of these two types of classifiers, we give a minimization algorithm provably converging to the minimum of any such surrogate. While seemingly different, we show that these algorithms are offshoots of the same "master" algorithm. This provides a new and broad unified account of different popular algorithms, including additive regression with the squared loss, the logistic loss, and the top-down induction performed in CART, C4.5. Moreover, we show that the induction enjoys the most popular boosting features, regardless of the surrogate. Experiments are provided on 40 readily available domains.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2008.225DOI Listing

Publication Analysis

Top Keywords

surrogates
5
bregman divergences
4
divergences surrogates
4
surrogates learning
4
learning bartlett
4
bartlett 2006
4
2006 proved
4
proved ground
4
ground condition
4
condition surrogates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!