The Drosophila central brain is composed of thousands of neurons that derive from approximately 100 neuroblasts per hemisphere. Functional circuits in the brain require precise neuronal wiring and tight control of neuronal numbers. How this accurate control of neuronal numbers is achieved during neural development is largely unclear. Specifically, the role of programmed cell death in control of cell numbers has not been studied in the central brain neuroblast lineages. Here, we focus on four postembryonic neuroblast lineages in the central brain identified on the basis that they express the homeobox gene engrailed (en). For each lineage, we determine the total number of adult-specific neurons generated as well as number and pattern of en-expressing cells. We then demonstrate that programmed cell death has a pronounced effect on the number of cells in the four lineages; approximately half of the immature adult-specific neurons in three of the four lineages are eliminated by cell death during postembryonic development. Moreover, we show that programmed cell death selectively affects en-positive versus en-negative cells in a lineage-specific manner and, thus, controls the relative number of en-expressing neurons in each lineage. Furthermore, we provide evidence that Notch signaling is involved in the regulation of en expression. Based on our findings, we conclude that lineage-specific programmed cell death plays a prominent role in the generation of neuronal number and lineage diversity in the Drosophila brain.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.037226DOI Listing

Publication Analysis

Top Keywords

cell death
24
programmed cell
16
central brain
12
death postembryonic
8
control neuronal
8
neuronal numbers
8
neuroblast lineages
8
adult-specific neurons
8
death
6
brain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!