A series of novel aryl-substituted triazolyl D-galactosamine derivatives was synthesized as ligands for the carbohydrate recognition domain of the major subunit H1 (H1-CRD) of the human asialoglycoprotein receptor (ASGP-R). The compounds were biologically evaluated with a newly developed competitive binding assay, surface plasmon resonance and by a competitive NMR binding experiment. With compound 1b, a new ligand with a twofold improved affinity to the best so far known D-GalNAc was identified. This small, drug-like ligand can be used as targeting device for drug delivery to hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2009.08.049 | DOI Listing |
J Nanobiotechnology
December 2024
Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs).
View Article and Find Full Text PDFAtherosclerosis
December 2024
Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands. Electronic address:
Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation.
View Article and Find Full Text PDFRSC Med Chem
December 2024
University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs).
View Article and Find Full Text PDFCardiovasc Diabetol
November 2024
Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
The asialoglycoprotein receptor 1 (ASGR1), a multivalent carbohydrate-binding receptor that primarily is responsible for recognizing and eliminating circulating glycoproteins with exposed galactose (Gal) or N-acetylgalactosamine (GalNAc) as terminal glycan residues, has been implicated in modulating the lipid metabolism and reducing cardiovascular disease burden. In this study, we investigated the impact of ASGR1 deficiency (ASGR1 on atherosclerosis by evaluating its effects on plaque formation, lipid metabolism, circulating immunoinflammatory response, and circulating N-glycome under the hypercholesterolemic condition in ApoE-deficient mice. After 16 weeks of a western-type diet, ApoE/ASGR1 mice presented lower plasma cholesterol and triglyceride levels compared to ApoE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!