Cells within tissues derive mechanical anchorage and specific molecular signals from the insoluble extracellular matrix (ECM) that surrounds them. Understanding the role of different cues that extracellular matrices provide cells is critical for controlling and predicting cell response to scaffolding materials. Using an engineered extracellular matrix of Type I collagen we examined how the stiffness, supramolecular structure, and glycosylation of collagen matrices influence the protein levels of cellular FAK and the activation of myosin II. Our results show that (1) cellular FAK is downregulated on collagen fibrils, but not on a non-fibrillar monolayer of collagen, (2) the downregulation of FAK is independent of the stiffness of the collagen fibrils, and (3) FAK levels are correlated with levels of tyrosine phosphorylation of the collagen adhesion receptor DDR2. Further, siRNA depletion of DDR2 blocks FAK downregulation. Our results suggest that the collagen receptor DDR2 is involved in the regulation of FAK levels in vSMC adhered to Type I collagen matrices, and that regulation of FAK levels in these cells appears to be independent of matrix stiffness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.08.036 | DOI Listing |
Molecules
December 2024
Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
In cases in which a rapid metabolism is the cause of an unfavorable pharmacokinetic profile, it is important to determine the Sites of Metabolism (SoMs) of a molecule to introduce the necessary modifications to improve the stability of the compound. The substitution of hydrogen atoms by deuterium atoms has been proposed to ameliorate such properties due to the greater stability of the C-D bonds. , bearing a 2-phenylamino substituent, is a compound previously described by our group with good biological activity as a discoidin domain receptor (DDR2) inhibitor but suffers from low metabolic stability determined in a test with rat-liver microsomes (less than 50% of the initial compound after 60 min).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
: Chemoresistance is an important issue to be solved in breast cancer. It is well known that the content and morphology of collagens in tumor tissues are drastically altered following chemotherapy, and discoidin domain receptor 2 (DDR2) is a unique type of receptor tyrosine kinase (RTK). This RTK is activated by collagens, playing important roles in human malignancies.
View Article and Find Full Text PDFBone Res
January 2025
Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFInvest New Drugs
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
Melanoma, one of the most prevalent cancers worldwide, frequently metastasizes to the lung and bones. Tumor-associated macrophages play essential roles in melanoma metastasis but the underlying mechanism remains obscure. We previously demonstrated that specific knockout of Ddr2, a receptor tyrosine kinase, exacerbates systemic inflammation via modulating macrophage repolarization.
View Article and Find Full Text PDFMol Neurobiol
November 2024
Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!