Dendrimers are a potential drug carrier. Because modification with polyethylene glycol (PEG) is known to improve the blood retention, PEGylated dendrimers have been studied as a useful drug carrier. In this study, three types of PEGylated L-lysine-bearing polyamidoamine dendrimers (PEG2k-Lys-PAMAM (G4), PEG5k-Lys-PAMAM (G4), PEG2k-Lys-PAMAM (G5)) were synthesized, which are composed of a dendrimer of different generations (generations 4 and 5) and PEG chains with different molecular weights (2k and 5k). An acetylated L-lysine-bearing dendrimer was also synthesized as a non-PEGylated dendrimer. Bifunctional diethylenetriaminepentaacetic acid (pSCN-benzyl-DTPA) was bound to the epsilon -amino group of lysine in a dendrimer, to be labeled with radioactive indium-111. These PEGylayed dendrimers showed longer blood retention and lower accumulation in other normal organs such as the kidneys than the non-PEGylated dendrimer. The PEGylated dendrimers with the higher generation and the longer PEG led the greater blood retention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2009.09.015DOI Listing

Publication Analysis

Top Keywords

pegylated dendrimers
12
blood retention
12
polyethylene glycol
8
drug carrier
8
non-pegylated dendrimer
8
dendrimers
6
dendrimer
5
influence dendrimer
4
dendrimer generation
4
generation polyethylene
4

Similar Publications

Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics.

Mol Pharm

January 2025

School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India.

Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Asenapine maleate (ASPM) is a second-generation antipsychotic approved for adult schizophrenia and bipolar disorder but suffers from low oral bioavailability (<2%) due to extensive first-pass metabolism in the liver.
  • To improve ASPM's absorption, researchers developed nanoformulations using ligands like RGD and peptide dendrimers to target the intestinal lymphatic system.
  • Various techniques, including solid phase peptide synthesis and high-performance chromatography, were used to create and characterize liposomal formulations, and in vitro and in vivo studies were conducted to assess their effectiveness and pharmacokinetics in rats.
View Article and Find Full Text PDF

Ruthenium(II) complexes containing PEGylated N-heterocyclic carbene ligands for tunning biocompatibility in the fight against cancer.

J Inorg Biochem

January 2025

University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain. Electronic address:

A synthetic procedure was designed for the preparation and characterization of Ag and Ru complexes containing NHC ligands functionalized with PEG fragments. Stability studies were conducted to gain insight of the species in water and other solvents like DMSO, or with reagents like imidazole as representative group for histidine amino acid. The presence of Cl atoms instead of H in the 4,5 positions of the N-heterocyclic carbene afforded higher water stability.

View Article and Find Full Text PDF

Switchable PAMAM megamers for deep tumor penetration and enhanced cell uptake.

J Control Release

November 2024

Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom. Electronic address:

Nanoparticles fabricated to deliver anticancer drugs are usually designed to present optimized tumor penetration and cell internalization. However, there are some barriers and difficulties with most current technologies. Herein, size and charge switchable polyamidoamine (PAMAM) megamers (SChPMs) were prepared for the delivery of doxorubicin (DOX).

View Article and Find Full Text PDF

Background: Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!