Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia.

BMC Genomics

Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.

Published: September 2009

Background: Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc) which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems.

Results: Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes.

Conclusion: For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine-tuned control of quorum sensing gene expression in B. cenocepacia strains carrying the cenocepacia island.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753556PMC
http://dx.doi.org/10.1186/1471-2164-10-441DOI Listing

Publication Analysis

Top Keywords

quorum sensing
36
gene expression
20
sensing systems
16
cepr ccir
16
cepir cciir
12
quorum
10
cenocepacia
10
sensing
9
reciprocal regulation
8
cciir quorum
8

Similar Publications

Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.

View Article and Find Full Text PDF

Sulforaphane as a promising anti-caries agents: inhibitory effects on and caries control in a rat model.

Front Microbiol

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Dental caries has been one of the most prevalent diseases globally over the last few decades, threatening human oral and general health. The most critical aspect in caries control is to inhibit the dominant cariogenic bacteria (). Sulforaphane (SFN), a compound found in a wide range of cruciferous plants, has demonstrated bacteriostatic activities against various pathogenic bacteria.

View Article and Find Full Text PDF

A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases.

Biotechnol Bioeng

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.

N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!