Cancer poses a massive health burden with incidence rates expected to double globally over the next decade. In the United Kingdom screening programmes exists for cervical, breast, and colorectal cancer. The ability to screen individuals for solid malignant tumours using only a peripheral blood sample would revolutionise cancer services and permit early diagnosis and intervention. Raman spectroscopy interrogates native biochemistry through the interaction of light with matter, producing a high definition biochemical 'fingerprint' of the target material. This paper explores the possibility of using Raman spectroscopy to discriminate between cancer and non-cancer patients through a peripheral blood sample. Forty blood samples were obtained from patients with Head and Neck cancer and patients with respiratory illnesses to act as a positive control. Raman spectroscopy was carried out on all samples with the resulting spectra being used to build a classifier in order to distinguish between the cancer and respiratory patients' spectra; firstly using principal component analysis (PCA)/linear discriminant analysis (LDA), and secondly with a genetic evolutionary algorithm. The PCA/LDA classifier gave a 65% sensitivity and specificity for discrimination between the cancer and respiratory groups. A sensitivity score of 75% with a specificity of 75% was achieved with a 'trained' evolutionary algorithm. In conclusion this preliminary study has demonstrated the feasibility of using Raman spectroscopy in cancer screening and diagnostics of solid tumours through a peripheral blood sample. Further work needs to be carried out for this technique to be implemented in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753303 | PMC |
http://dx.doi.org/10.1186/1758-3284-1-34 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!