Evaluation of water treatment plant UV reactor efficiency against Cryptosporidium parvum oocyst infectivity in immunocompetent suckling mice.

J Appl Microbiol

 Parasitology Department, Rouen University Hospital & EA 4311-IFRMP 23, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France.

Published: March 2010

Aim: To assess the efficiency of a medium-pressure UV reactor under full-scale water treatment plant (WTP) conditions on the infectivity of Cryptosporidium parvum oocysts in an Naval Medical Research Institute (NMRI) suckling mice infectivity model.

Methods And Results: Six/seven-day-old mice were administered orally 2-10x10(4)Cryptosporidium parvum oocysts. Compared with nonirradiated oocysts, 40 mJ cm(-2) UV irradiation of ingested oocysts resulted 7 days later in a 3.4-4.0 log10 reduction in the counts of small intestine oocysts, using a fluorescent flow cytometry assay.

Conclusion: Present data extend to industrial conditions previous observations of the efficiency of UV irradiation against Cryptosporidium parvum oocyst in vivo development.

Significance And Impact Of The Study: Present results suggest that in WTP conditions, a medium-pressure UV reactor is efficient in reducing the infectivity of Cryptosporidium parvum oocysts, one of the most resistant micro-organisms present in environmental waters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.2009.04509.xDOI Listing

Publication Analysis

Top Keywords

cryptosporidium parvum
16
parvum oocysts
12
water treatment
8
treatment plant
8
parvum oocyst
8
suckling mice
8
medium-pressure reactor
8
wtp conditions
8
infectivity cryptosporidium
8
oocysts
6

Similar Publications

Structural analyses of Cryptosporidium parvum epitopes reveal a novel scheme of decapeptide binding to H-2K.

J Struct Biol

January 2025

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:

Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.

View Article and Find Full Text PDF

Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.

Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.

View Article and Find Full Text PDF

is a common, waterborne gastrointestinal parasite that causes diarrheal disease worldwide. Currently there are no effective therapeutics to treat cryptosporidiosis in at-risk populations. Since natural products are a known source of anti-parasitic compounds, we screened a library of extracts and pure natural product compounds isolated from bacteria and fungi collected from subterranean environments for activity against .

View Article and Find Full Text PDF

Prevalence of , and spp. in diarrhoeic suckling calves from north-western Spain and analysis of their interactions.

Int J Vet Sci Med

January 2025

Galicia (Grupo INVESAGA). Departamento de Patología Animal. Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain, Investigación en Sanidad Animal.

Although , and some species are frequently involved in neonatal calf diarrhoea (NCD), detailed studies on their interactions are scarce. Therefore, a cross-sectional study including faecal samples from 404 diarrhoeic calves aged 0-30 days was performed. oocysts and cysts were detected by immunofluorescence antibody test and positive samples were molecularly characterized.

View Article and Find Full Text PDF

Molecular characterization and zoonotic risk assessment of spp. in Philippine bats.

Food Waterborne Parasitol

March 2025

Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.

is a genus of parasitic protozoa known to cause diarrheal disease that impacts both humans and animals through infection of various vertebrate species. Bats are recognized as reservoirs for zoonotic pathogens, including . The Philippines, renowned for its rich biodiversity, is home to diverse bat species, providing a unique ecological setting to investigate infection dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!