The purpose of this study was to investigate the relationship between the chemical form and localization of zinc (Zn) in plant leaves and their Zn accumulation capacity. An interspecific cross between Arabidopsis halleri sp. halleri and Arabidopsis lyrata sp. petrea segregating for Zn accumulation was used. Zinc (Zn) speciation and Zn distribution in the leaves of the parent plants and of selected F(1) and F(2) progenies were investigated by spectroscopic and microscopic techniques and chemical analyses. A correlation was observed between the proportion of Zn being in octahedral coordination complexed to organic acids and free in solution (Zn-OAs + Zn(aq)) and Zn content in the leaves. This pool varied between 40% and 80% of total leaf Zn depending on the plant studied. Elemental mapping of the leaves revealed different Zn partitioning between the veins and the leaf tissue. The vein : tissue fluorescence ratio was negatively correlated with Zn accumulation. The higher proportion of Zn-OAs + Zn(aq) and the depletion of the veins in the stronger accumulators are attributed to a higher xylem unloading and vacuolar sequestration in the leaf cells. Elemental distributions in the trichomes were also investigated, and results support the role of carboxyl and/or hydroxyl groups as major Zn ligands in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2009.02996.x | DOI Listing |
Curr Issues Mol Biol
November 2024
School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China.
Methyl-CpG-binding domain (MBD) proteins play vital roles in epigenetic gene regulation, and they have diverse molecular, cellular, and biological functions in plants. MBD proteins have been functionally characterized in a few plant species. However, the structure and function of MBD proteins in and remain unknown.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
Plant Cell Physiol
November 2024
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.
Climate oscillations in the Quaternary forced species to major latitudinal or altitudinal range shifts. It has been suggested that adaptation concomitant with range shifts plays key roles in species responses during climate oscillations, but the role of selection for local adaptation to climatic changes remains largely unexplored. Here, we investigated population structure, demographic history and signatures of climate-driven selection based on genome-wide polymorphism data of 141 Japanese Arabidopsis halleri individuals, with European ones as outgroups.
View Article and Find Full Text PDFElife
September 2024
Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France.
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them.
View Article and Find Full Text PDFJ Plant Res
November 2024
Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!