Neurons in primary visual cortex (V1) are frequently classified based on their response linearity: the extent to which their visual responses to drifting gratings resemble a linear replica of the stimulus. This classification is supported by the finding that response linearity is bimodally distributed across neurons in area V1 of anesthetized animals. However, recent studies suggest that such bimodal distribution may not reflect two neuronal types but a nonlinear relationship between the membrane potential and the spike output. A main limitation of these previous studies is that they measured response linearity in anesthetized animals, where the distance between the neuronal membrane potential and the spike threshold is artificially increased by anesthesia. Here, we measured V1 response linearity in the awake brain and its correlation with the neuronal spontaneous firing rate, which is related to the distance between membrane potential and threshold. Our results demonstrate that response linearity is bimodally distributed in awake V1 but that it is poorly correlated with spontaneous firing rate. In contrast, the spontaneous firing rate is best correlated to the response selectivity and response latency to stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040780PMC
http://dx.doi.org/10.1167/9.9.12DOI Listing

Publication Analysis

Top Keywords

response linearity
20
membrane potential
12
spontaneous firing
12
firing rate
12
visual cortex
8
linearity bimodally
8
bimodally distributed
8
anesthetized animals
8
potential spike
8
measured response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!