Titanium dioxide (TiO(2)) has been proven to be a highly efficient strategy and widely used for phosphopeptide enrichment. Many advances have been made recently, including online/offline mode and optimization of sample loading/elution buffer; however, beads usage has rarely been explored. In the current study, we found that the peptide-to-TiO(2) beads ratio was a significant factor for phosphopeptide enrichment, and insufficient or excessive beads could decrease the selectivity. Specifically, for HeLa total cell lysate, the optimum peptide-to-beads ratio is about 1:2-1:8 (mass/mass) to obtain the highest enrichment selectivity and the maximum phosphopeptides identification with single incubation. Pre-experiments are recommended to decide an optimum peptide-to-TiO(2) beads ratio when it comes to different samples. Interestingly, deficient beads can help identify much more multiphosphorylated peptides than the optimum peptide-to-beads ratio by consecutive incubations. Therefore, if multiphosphorylated peptides identification is desired, deficient beads amount is preferred. In addition, consecutive incubation using deficient beads could be used as a fractionation of phosphopeptides besides as an enrichment method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr900659n | DOI Listing |
J Proteome Res
November 2009
Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!