The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804891 | PMC |
http://dx.doi.org/10.1002/ajp.20741 | DOI Listing |
Spine (Phila Pa 1976)
January 2025
Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
Study Design: Radiographic analysis.
Objective: Evaluate the anatomical relationships of the bowel to the lateral surgical corridor and the spine in various surgical positions.
Summary Of Background Data: Retroperitoneal transpsoas lateral lumbar interbody fusion (LLIF) may be performed with patients in the prone position, allowing for lateral and posterior approaches to the spine without repositioning the patient.
Neuroimage
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:
In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
In this research, we synthesized a series of TiCT nanosheets with varying lateral dimensions and conducted a thorough investigation into the profound relationship between the electrochemical performance of TiCT materials and their lateral sizes. This study innovatively incorporates a clever combination of small-sized and large-sized TiCT nanosheets in the electrode preparation process. This strategy yields excellent results at low scan rates, with the fabricated electrode achieving a high volumetric capacitance of approximately 658 F/g.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.
View Article and Find Full Text PDFBiomater Adv
January 2025
Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China. Electronic address:
In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!