The immediate early gene product Fos is part of the activator protein-1 (AP-1) transcription factor and has been shown to participate in the molecular mechanisms of cell proliferation, differentiation, apoptosis, and transformation. The analysis of genetically modified mice and cells derived thereof has provided important new insights into its specific biological functions in development, tissue homeostasis, and cellular responses to environmental insults. Moreover, the deregulation of Fos could be linked with a variety of pathological conditions, including immunological, skeletal and neurological defects, as well as oncogenic transformation and tumor progression. In contrast to the mainstream opinion concerning the oncogenic function of Fos an increasing number of experimental reports also describe a tumor-suppressive function in various cancer types. More recently, altered Fos expression in cell culture and mouse models combined with global gene expression analysis unraveled novel downstream effectors of the Fos-regulated genetic program. Finally, selective inhibition of its function with a small molecule inhibitor in a preclinical mouse model of arthritis demonstrated that targeting Fos/AP-1 activity could be an auspicious new option for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-24.1451 | DOI Listing |
BMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFTrends Immunol
December 2024
College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Generalized pustular psoriasis (GPP) is a rare human autoinflammatory disorder with life-threatening systemic effects. Keratinocyte-derived interleukin (IL)-36 signaling has been identified as a key mediator of immune response in the skin of affected individuals. Recognition of various mutations along the IL-36 axis and the downstream nuclear transcription factor κB (NF-κB) signaling have established GPP as genetically, immunologically, and histopathologically distinct and amenable to immunomodulation, which is epitomized by the recent success of IL-36 antagonism.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
December 2024
Department of Orthopaedic Surgery, Konkuk University Medical Center, Seoul, Korea.
Background: Muscle atrophy after the rupture of a rotator cuff (RC) tendon is a major factor that increases the risk of secondary complications and re-rupture. Metformin, a type 2 diabetes treatment, can be used to modulate intracellular signaling pathways that promote muscle growth. This study aimed to verify whether systemic metformin administration could prevent supraspinatus (SS) atrophy after RC rupture in a rat model.
View Article and Find Full Text PDFGene
December 2024
Translational Research Centre, Asian Healthcare Foundation, AIG Hospitals, Hyderabad, India. Electronic address:
Background: A comprehensive understanding of the molecular pathogenesis of chronic pancreatitis (CP), a fibroinflammatory disorder of the pancreas, is warranted for the development of targeted therapies. The current study focused on comparing the transcriptomes of pancreatic tissues obtained from patients with CP with those of two rodent models of chemically induced CP to identify dysregulated genes/signaling pathways.
Methods: Pancreatitis was induced in mice using cerulein and L-arginine.
Biochem Biophys Res Commun
December 2024
The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel. Electronic address:
The ubiquitin proteasome system (UPS), driven by ubiquitin as a degradation signal, eliminates, in a highly specific manner, 'abnormal' proteins and proteins that completed their function. This process involves a hierarchical cascade of E1, E2, and E3 enzymes. The E3 ubiquitin ligases, act as specific receptors that bind their cognate substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!