Background: In a recent preliminary trial in 20 patients after gastric bypass surgery, 20 minutes of repetitive transcranial magnetic stimulation (TMS) over the left prefrontal cortex was associated with a 40% reduction in postoperative patient-controlled morphine use. As is the case with all novel scientific findings, and especially those that might have an impact on clinical practice, replicability is paramount. This study sought to test this finding for replication and to more accurately estimate the effect size of this brief intervention on postoperative morphine use and postoperative pain and mood ratings.

Methods: Twenty participants who underwent gastric bypass surgery completed this replication and extension study. Beck Depression Inventory and Center for Epidemiological Studies Depression scale scores were collected before surgery and at the time of discharge from the hospital. Immediately after surgery, participants were randomly assigned to receive 20 minutes of real or sham repetitive TMS (rTMS) (10 Hz, 10 seconds-ON, 20 seconds-OFF for a total of 4000 pulses). Patient-controlled morphine pump usage was tracked throughout each participant's postoperative hospital stay. In addition, pain and mood ratings were collected via visual analogue scales twice per day.

Results: Findings from the original postoperative TMS trial were replicated, as cumulative morphine usage curves were significantly steeper among patients receiving sham TMS, and participants receiving real TMS had used 35% less morphine at the time of discharge than participants receiving sham TMS. At the time of discharge, subjects who had received real TMS had used 42.50 mg of morphine, whereas subjects receiving sham TMS had used an average of 64.88 mg. When the data from the original preliminary trial were combined with the data from this replication trial, a significant difference in cumulative morphine usage was observed between subjects receiving real and sham TMS. Overall, participants who received real TMS used 36% less morphine and had significantly lower ratings of postoperative pain-on-average, and pain-at-its-worst than participants receiving sham. In addition, participants who received real TMS rated their mood-at-its-worst as significantly better than participants receiving sham. The effect of a single 20-minute session of TMS on postoperative pain and morphine use appears to be large (Cohen's d = 0.70) and clinically meaningful. Lastly, cross-lag correlational analyses indicate that improvements in mood follow improvements in pain by approximately 12 hours, supporting the notion that postoperative analgesic TMS effects are not driven by antidepressant effects.

Conclusions: Although more research is needed to verify these observed effects independently, findings from the original postoperative TMS trial were replicated. TMS may have the potential to significantly improve current standards of postoperative care among gastric bypass patients, and further studies may be warranted on other surgical populations. Future investigations should use methodology that permits more definitive conclusions about causal effects of TMS on postoperative pain (for example, double-blinding, sham stimulation that is matched with real TMS with respect to scalp discomfort).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744083PMC
http://dx.doi.org/10.1016/j.brs.2008.04.002DOI Listing

Publication Analysis

Top Keywords

receiving sham
20
real tms
20
tms
17
sham tms
16
participants receiving
16
postoperative
12
gastric bypass
12
postoperative pain
12
time discharge
12
received real
12

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.

Background: Sporadic Alzheimer's Disease (sAD) is the most prevalent progressive neurodegenerative disease worldwide, without a cure. We propose to investigate therapies that contribute to the current state of this problem using a model of sAD in rats based on a single intracerebroventricular (icv) injection of streptozotocin (STZ). In this sense, thymulin (originally known as serum thymic factor, FTS), a thymic peptide, emerges as a potential therapeutic agent due to its proven anti-inflammatory effects.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.

Background: Sporadic Alzheimer's disease (sAD) is the most common form of dementia, characterized by a progressive decline in cognitive function and, cortical and hippocampal atrophy. Our objective is to develop neuroprotective therapies that promote the homeostatic and modulatory properties of astrocytes, and enhance their protective functions. Glial-derived neurotrophic factor (GDNF) has emerged as a promising factor for its ability to promote neuronal survival and function.

View Article and Find Full Text PDF

Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.

Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.

View Article and Find Full Text PDF

Background: Chronic, excessive alcohol consumption causes neurodegeneration and is associated with an increased risk for Alzheimer's disease (AD) and other dementias. Moreover, there has been a consistent rise in alcohol consumption in older adults in the past few decades. However, there is minimal research showing how alcohol consumption affects AD neuropathogenesis and biological mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a serious societal concern and is considered a major risk factor for the development of Alzheimer's disease (AD) and related dementias. Identifying shared pathological mediators that contribute to the progression of AD following TBI may allow therapeutic targeting to reduce the likelihood of developing AD following TBI. Cerebrovascular dysfunction is present in both AD and TBI, and thrombin has been implicated as a mediator of cerebrovascular dysfunction and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!