Ecologists use the relative abundance of fossil pollen in sediments to estimate how tree species abundances change over space and time. To predict historical forest composition and quantify the available information, we build a Bayesian hierarchical model of forest composition in central New England, USA, based on pollen in a network of ponds. The critical relationships between abundances of taxa in the pollen record and abundances as actual vegetation are estimated for the modern and colonial periods, for which both pollen and direct vegetation data are available, based on a latent multivariate spatial process representing forest composition. For time periods in the past with only pollen data, we use the estimated model parameters to constrain predictions about the latent spatio-temporal process conditional on the pollen data. We develop an innovative graphical assessment of feature significance to help to infer which spatial patterns are reliably estimated. The model allows us to estimate the spatial distribution and relative abundances of tree species over the last 2500 years, with an assessment of uncertainty, and to draw inference about how these patterns have changed over time. Cross-validation suggests that our feature significance approach can reliably indicate certain large-scale spatial features for many taxa, but that features on scales smaller than 50 km are difficult to distinguish, as are large-scale features for some taxa. We also use the model to quantitatively investigate ecological hypotheses, including covariate effects on taxa abundances and questions about pollen dispersal characteristics. The critical advantages of our modeling approach over current ecological analyses are the explicit spatio-temporal representation, quantification of abundance on the scale of trees rather than pollen, and uncertainty characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744074PMC
http://dx.doi.org/10.1198/jasa.2009.0026DOI Listing

Publication Analysis

Top Keywords

forest composition
16
pollen
9
fossil pollen
8
tree species
8
periods pollen
8
pollen data
8
estimated model
8
feature significance
8
features taxa
8
abundances
5

Similar Publications

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

Bauxite mining has been caused severe changes in the natural ecosystems of the Amazon, but the restoration of these areas is mandatory by federal law in Brazil. The recolonization of fauna is crucial to establishing the ecological functions of recovering forests, and the small nonflying mammals can stand out in this process. Assessing taxonomic and functional diversity parameters, we demonstrated that in the early stages of forest recovery post-bauxite mining, between 6 and 11 years, it is possible to restore approximately 45% of the richness of small non-flying mammal species from the original habitats, that in this case were altered Primary Forests.

View Article and Find Full Text PDF

The study analyzed the spatial distribution characteristics, evolution rules, and driving factors of 138 China's national agricultural cultural heritage sites from 2013 to 2021 at the overall and regional levels, using kernel density analysis, Centres for standard deviation ellipse analyses, spatial autocorrelation analysis, and geographical detector analysis.The results showed that: ①From an overall perspective, the spatial pattern of China's national agricultural cultural heritage changed greatly from 2013 to 2021, with a highly uneven spatial distribution, gradually showing a distribution pattern of "widely distributed, locally concentrated". The spatial distribution of China's national agricultural cultural heritage is increasingly evident, and the spatial distribution type has evolved from discrete to clustered.

View Article and Find Full Text PDF

Effects of Low-Severity Fire on the Composition and Stability of Soil Organic Carbon in Permafrost Peatlands (Northeast China).

Environ Sci Technol

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun 130102, China.

Climate change and human activity are increasing the frequency of wildfires in peatlands and threatening permafrost peatland carbon pools. In Northeast China, low-severity prescribed fires are conducted annually on permafrost peatlands to reduce the risk of wildfires. These fires typically do not burn surface peat but lead to the loss of surface vegetation and introduction of pyrogenic carbon.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!