A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of 1H NMR spectroscopic data and the generation of synthetic validation sets. | LitMetric

AI Article Synopsis

  • The NMR metabolomics community often relies on empirical data and simplified simulations to evaluate algorithms, but current performance metrics are limited and not always reliable.
  • A new technique has been developed to create realistic synthetic validation sets based on NMR spectroscopic data, allowing for more precise assessment of different algorithms.
  • These synthetic data sets, which reflect complex characteristics of real experimental data, can be downloaded for research purposes at a specified website.

Article Abstract

Motivation: Common contemporary practice within the nuclear magnetic resonance (NMR) metabolomics community is to evaluate and validate novel algorithms on empirical data or simplified simulated data. Empirical data captures the complex characteristics of experimental data, but the optimal or most correct analysis is unknown a priori; therefore, researchers are forced to rely on indirect performance metrics, which are of limited value. In order to achieve fair and complete analysis of competing techniques more exacting metrics are required. Thus, metabolomics researchers often evaluate their algorithms on simplified simulated data with a known answer. Unfortunately, the conclusions obtained on simulated data are only of value if the data sets are complex enough for results to generalize to true experimental data. Ideally, synthetic data should be indistinguishable from empirical data, yet retain a known best analysis.

Results: We have developed a technique for creating realistic synthetic metabolomics validation sets based on NMR spectroscopic data. The validation sets are developed by characterizing the salient distributions in sets of empirical spectroscopic data. Using this technique, several validation sets are constructed with a variety of characteristics present in 'real' data. A case study is then presented to compare the relative accuracy of several alignment algorithms using the increased precision afforded by these synthetic data sets.

Availability: These data sets are available for download at http://birg.cs.wright.edu/nmr_synthetic_data_sets.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btp540DOI Listing

Publication Analysis

Top Keywords

data
16
validation sets
16
spectroscopic data
12
empirical data
12
simulated data
12
nmr spectroscopic
8
simplified simulated
8
experimental data
8
data sets
8
synthetic data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!