A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dysregulation of the vitamin D nuclear receptor may contribute to the higher prevalence of some autoimmune diseases in women. | LitMetric

AI Article Synopsis

  • Autoimmune diseases like Hashimoto's thyroiditis occur more frequently in women than men, but the reasons for this gender disparity are not fully understood.
  • The vitamin D nuclear receptor (VDR) plays a critical role in immune response and its dysregulation can lead to hormonal imbalances and decreased antimicrobial peptide (AmP) expression, weakening the immune system.
  • Women may be more affected by VDR dysregulation due to an additional site of VDR expression in the endometrium, leading to higher bacterial loads, especially during early pregnancy when vitamin D levels rise significantly.

Article Abstract

Researchers have noted that the incidence of autoimmune diseases, such as Hashimoto's thyroiditis, is markedly higher in women than in men, but to date the reason for this disparity has been unclear. The vitamin D nuclear receptor (VDR) is expressed in the human cycling endometrium. Because the VDR controls expression of the cathelicidin and beta-defensin antimicrobial peptides (AmPs), dysregulation of the receptor greatly compromises the innate immune response. Increasing evidence indicates the presence of a chronic, intraphagocytic, metagenomic microbiota in patients with autoimmune disease that may survive by dysregulating the VDR. VDR dysregulation, in turn, prevents the breakdown of the active vitamin D metabolite 1,25-hydroxyvitamin D (1,25-D) by CYP24. In silico data suggest that when 1,25-D rises above its normal range, it binds the alpha/beta thyroid receptors, the glucocorticoid receptor (GCR), and the androgen receptor (AR), displacing their native ligands and causing an array of hormonal imbalances. If T3 is displaced from alpha-thyroid, thyroiditis may result. Because the VDR, GCR, and AR also express multiple families of AmPs, expression of these natural antibiotics further wanes in response to dysregulation by 1,25-D. The end result is a system-wide drop in AmP expression that may allow pathogens to spread with greater ease. Because women have an extra site of VDR expression in the endometrium, the drop in AmP expression associated with nuclear receptor dysregulation may disproportionately affect them. This would cause women to accumulate higher bacterial loads than their male counterparts, particularly during early pregnancy when 1,25-D levels rise by 40%.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2009.04672.xDOI Listing

Publication Analysis

Top Keywords

nuclear receptor
12
vitamin nuclear
8
autoimmune diseases
8
drop amp
8
amp expression
8
receptor
6
vdr
6
dysregulation
5
expression
5
dysregulation vitamin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!