In cerebral malaria, the most severe complication of malaria, both neurotransmission mechanisms and energy metabolism are affected. To understand how metabolic changes modify neurotransmission, we examined P2 receptor expression in a murine model of cerebral malaria. Quantitative polymerase chain reaction experiments revealed that parasite deposition was greatest in the cerebellum, compared with other areas of the brain, suggesting a correlation between brain parasitemia and loss of control of movement. Infected mice showed modified patterns of expression of P2 receptor subtype messenger RNA (mRNA), depending on both the specific purinergic receptor and the cerebral region analyzed. Immunohistochemical studies indicated altered levels of protein expression by these receptors in infected brains and, in some cases, a pattern of expression different from that noted in control mice. These differences in both the amount of mRNA and the protein distribution of P2 receptors observed in the different brain sites in infected mice suggest an important role for P2 receptors in either provoking cerebral damage or conferring neuroprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/605896 | DOI Listing |
Biomed Khim
December 2024
Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy.
View Article and Find Full Text PDFChem Biodivers
December 2024
UFPA: Universidade Federal do Para, Biological Science, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil, Belem, BRAZIL.
Oxidative stress is a pivotal factor in the pathogenesis of malaria, contributing to the development of conditions such as anemia, respiratory complications, and cerebral malaria. To counteract oxidative damage, we evaluated the effects of vitamin E (α-TOH) and D-α-tocopherol polyethylene glycol succinate 1000 (TPGS) supplementation on parasitemia progression, mortality rate, and blood-brain barrier (BBB) permeability in Plasmodium berghei ANKA-infected mice. The mice were divided into four groups: a control group (untreated and uninfected), an infected group (Pb), a TPGS+Pb group, and an α-TOH+Pb group.
View Article and Find Full Text PDFMalar J
December 2024
Department of Infectious Diseases and Tropical Medicine, Hospital St. Georg, Leipzig, Germany.
Background: Post malaria neurologic syndrome (PMNS) is a rare complication of malaria, usually caused by Plasmodium falciparum. The clinical picture is highly variable and ranges from qualitative disturbances of consciousness and psychosis to damage to the peripheral nerves, usually occurring three to eight weeks after treated malaria.
Case Presentation: We report the case of a 54-year-old male who presented with recurrent clinical symptoms three and a half weeks after severe falciparum malaria.
J Infect Dis
December 2024
Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom.
Background: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored.
View Article and Find Full Text PDFForensic Sci Med Pathol
December 2024
Chair and Department of Forensic Medicine, Jagiellonian University Medical College, Kraków, Poland.
The diagnosis of malaria during the autopsy of a decomposed corpse may prove challenging. Macroscopic changes are non-specific and may include, among others, cerebral oedema, pulmonary oedema, hepatosplenomegaly and, on occasion, the presence of petechiae. The most effective diagnostic tools for malaria are the examination of blood smears and the use of rapid immunochromatographic tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!