The injection of water beneath liquid diethylene triamine in a glass cuvette leads to an unexpected phase evolution behavior of the two liquids. The space and time dependent developments of the molecular structure and the underlying transport associated with mixing of the two liquids are monitored by optical imaging and scanning Brillouin microscopy. Apparently, results obtained by either experimental technique lead to disparate interpretations. Whereas optical imaging suggests the existence of a two phase structure, which disappears within a few hours, acoustic microscopy indicates the evolution of a more gradually evolving and longer-lived three phase structure. According to molecular acoustics, the transport of diethylene triamine into water and vice versa behaves strongly asymmetric in time. An attempt is made to reconcile the observed optical and acoustic manifestations of the mixing process on the basis of molecular complex formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp904714g | DOI Listing |
Arthritis Res Ther
January 2025
Rheumazentrum Ruhrgebiet Herne, Ruhr University Bochum, Herne, Germany.
Background: Optical spectral transmission (OST) is a modern diagnostic method capable of quantifying inflammation in the finger and wrist joints of arthritis patients by assessing the blood-specific absorption of light transmitted through a tissue. The diagnostic performance of this modality has not been adequately examined and data regarding OST associations with magnetic resonance imaging (MRI) are limited. Aim of this study was therefore to investigate the performance of OST in assessing joint inflammation as compared to MRI in patients with inflammatory arthritis (IA).
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation.
View Article and Find Full Text PDFNano Lett
January 2025
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
In vivo optical imaging holds great potential for surgical guidance with the ability to intraoperatively identify tumor lesions in a surgical bed and navigate their surgical excision in real time. Nevertheless, its full potential remains underexploited, mainly due to the dearth of high-performance optical probes. Herein, hybrid cell membrane-biomimetic near-infrared II surface-enhanced Raman spectroscopy (NIR-II SERS) probes are reported for intraoperative resection guidance of orthotopic glioblastoma.
View Article and Find Full Text PDFNo Shinkei Geka
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University.
Surgery for spinal intramedullary tumors remains a major challenge for neurosurgeons. Successful surgery requires experience, skill, and intraoperative imaging support. Fluorescence imaging technology has become a valuable support in neurosurgical procedures of not only the brain but also the spinal cord.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK. Electronic address:
Temporal echocardiography image registration is important for cardiac motion estimation, myocardial strain assessments, and stroke volume quantifications. Deep learning image registration (DLIR) is a promising way to achieve consistent and accurate registration results with low computational time. DLIR seeks the image deformation that enables the moving image to be warped to match the fixed image.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!