This paper presents experimental investigations to actively modulate the nanoscale friction properties of a self-assembled monolayer (SAM) assembly using an external electric field that drives conformational changes in the SAM. Such "friction switches" have widespread implications in interfacial energy control in micro/nanoscale devices. Friction response of a low-density mercaptocarboxylic acid SAM is evaluated using an atomic force microscope (AFM) in the presence of a DC bias applied between the sample and the AFM probe under a nitrogen (dry) environment. The low density allows reorientation of individual SAM molecules to accommodate the attractive force between the -COOH terminal group and a positively biased surface. This enables the surface to present a hydrophilic group or a hydrophobic backbone to the contacting AFM probe depending upon the direction of the field (bias). Synthesis and deposition of the low-density SAM (LD-SAM) is reported. Results from AFM experiments show an increased friction response (up to 300%) of the LD-SAM system in the presence of a positive bias compared to the friction response in the presence of a negative bias. The difference in the friction response is attributed to the change in the structural and crystalline order of the film in addition to the interfacial surface chemistry and composition presented upon application of the bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la901221g | DOI Listing |
Sci Rep
January 2025
School of Computer, Heze University, No.2269, Daxue Road, Heze, 274015, Shandong, China.
A switching active disturbance rejection control (SADRC) strategy was proposed to solve the composite disturbance challenge arising from gap, LuGre friction, hydraulic spring force, and external load disturbance in the double closed-loop digital hydraulic cylinder position control system. Firstly, leveraging the established mathematical model of the double closed-loop digital hydraulic cylinder, the high-order state equation was derived. Subsequently, the high-order double closed-loop digital hydraulic cylinder control system was transformed into a second-order integral series control system using ADRC strategy.
View Article and Find Full Text PDFACS Nano
January 2025
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Hidradenitis suppurativa is an inflammatory skin disease for which adalimumab is an effective treatment in just over half of cases. Few factors associated with therapeutic response, and therefore potentially predictive of response, are known to date. This real-life study retrospectively explores the existence of such factors in a Belgian cohort of 82 patients, using several response scores: the Hidradenitis Suppurativa Clinical Response (HiSCR), the International Hidradenitis Suppurativa Severity Scoring System-55 (iHS4-55), and the dynamic metascore (a combination of the Hurley score, the 2007 version of the Sartorius score, the iHS4 and the HiSCR).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.
Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Machine Design and Tribology (IMKT), Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany.
To enhance the sliding tribological performance between PTFE and 40#steel (AISI 1040) under full film lubrication conditions, laser surface texturing (LST) technology was employed to prepare micro-dimples on the contact surfaces of 40# steel discs. The Box-Behnken design response surface methodology (BBD-RSM) was applied to optimize the micro-dimple parameters. Coefficients of friction (COFs), wear losses and worn contact surfaces of the PTFE-40# steel tribo-pairs were researched through repeated wear tests, as lubricated with sufficient anti-wear hydraulic oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!